	17. a) <-> H ₂ C ₂ O ₄ + SO ₄ ² - c)HC ₂ O ₄ '/H ₂ C ₂ O ₄ ; HSO ₄ '/SO ₄ ² - d) Reactants (KaHSO ₄ ' <kah<sub>2C₂O₄) 18. see answer 19. D 20. See answer 21. See answer 22. C 23. D 24. C 25. B 26. B 27. C 28. C 29. D 30. D</kah<sub>	1. C 2. C 3. B 4. A 5. B 6. B 7. C 8. B 9. B 11. D 12. C 13. B 14. A 15. C
70. A 71. D 72. C 73. See answer 74. D 75. C 76. C 77. D 78. B 79. D 80. C 81. B 82. D 83. C	59. B 60. C 61. A 62. A 62. A 63. D 64. B 65. A 66. a) H ₂ AsO ₄ b) H ₂ SeO ₄ c) H ₂ SO ₃ d) a <b<c +="" 67.="" 68.="" 69.="" a="" a)="" acid="" answer="" answer<="" b)="" because="" cl'="" favored="" hcl="" hf="" i)="" is="" products="" see="" stronger="" td="" than=""><td>43. B 44. A 45. B 46. A 47. C 48. B 49. D 50. D 51. D 52. D 53. D 54. C 55. D 56. D 57. D 58. A</td></b<c>	43. B 44. A 45. B 46. A 47. C 48. B 49. D 50. D 51. D 52. D 53. D 54. C 55. D 56. D 57. D 58. A

```
93. A
                                                                                                                                                                                                                                                                                   92.
                                                                                                                                                                                                                                                                                          91. D
                                                                                                                                                                                                                                                                                                  90.
                                                                                                                                                                                                                                                                                                          89.
                                                                                                                                                                                                                                                                                                                 88.
                                                                                                                                                                                                                                                                                                                        87.
                                                                                                                                                                                                                                                                                                                                86.
                                                                                                                                                                                                                                                                                                                                        85.
                                                                                                                                                                   98. C
                                                                                                                                                                                                                                     c) neutral, because [H^{+}] = [OH]
95. a) below 25°C, Kw<1x10<sup>-14</sup>,
                                                                                                                                                            99. B
                                                                                                                                                                                                               c) Kw = 2.9 \times 10^{-15}
                                                                                                                                                                                                                                                     b) pH = pOH = 7.17
                                                                                                                                                                                                                                                                   94. a) below 25°C, Kw<1x10<sup>-14</sup>, rxn
                                                                                                                                                                           97. a) pOH = 7.265
b) Kw = 2.95 \times 10^{-15}
                                                                                                                                                                                         drops = pH increases
b) Kw = 2.5 \times 10^{-15}
                                                                                                                                                                                                         96. a) at low temp = shift left, the [H_3O^+]
                                                                                                                                                                                                                       b) see #95c
                                                                                                         106.
                                                                                                                105.
                                                                                                                        104.
                                                                                                                               103.
                                                                                                                                       102.
                                                                                                                                              101.
                                                                                                                                                     100.
        119.
                118.
                                                                                   109
                                                                                          108.
                                                                                                  107.
                                              114.
                                                                           110.
                               116.
                                      115.
                                                                                                                                                                                                                                                                                                                 ₩
                                                                                                                                                                                                                                                                                                   B
                                                                                                                                                                                                                                                                                                                                 W
                                                                                                                                                                                                                               shifts left
                                                                                                                                                                                                                                                             shifts left
                                                                                                                                                                                                                                                                                   D
                                                                                                                                                                                                                                                                                                          \Box
                                                                                                                                                                                                                                                                                                                         pOH = 7.085
                                                                                                                 BCBCD
                      D
                              \mathbb{C}
                                             В
                                                            D
                                                                                                  , rxn
                                                                                                                                                                                                                                                                                                                 125
                                                                                                                                                                                                                138.
                                                                                                                                                                                                                                      135.
                                                                                                                                                                                                                                              134
                                                                                                                                                                                                                                                     133.
                                                                                                                                                                                                                                                             132.
                                                                                                                                                                                                                                                                    131.
                                                                                                                                                                                                                                                                            130.
                                                                                                                                                                                                                                                                                   129.
                                                                                                                                                                                                                                                                                           128.
                                                                                                                                                                                                                                                                                                  127.
                                                                                                                                                                                                                                                                                                          126.
                                                                                                                                                                                                                                                                                                                        124
                                                                                                                                                                                                                                                                                                                                        121.
122.
                                                            158.
                                                                    157.
                                                                           156.
                                                                                  155
                                                                                         153.
154.
                                                                                                         152.
                                                                                                                151.
                                                                                                                        150
                                                                                                                                149
                                                                                                                                       148
                                                                                                                                               147
                                                                                                                                                      146
                                                                                                                                                             145
                                                                                                                                                                                    142
                                                                                                                                                                                          141.
                                                                                                                                                                                                         139
                                                                                                                                                                                                                        137.
                                                                                                                                                                                                                               136.
        165
                       163.
                               162.
                                      161.
                                              160.
                                                     159.
                                                                                                                                                                     144
                                                                                                                                                                            143.
                                                                                                                                                                                                   140.
                164
                                                                                                               pH =
                                                                                                                                     pH = 1.97
                                                                                                                                                                                                                                                                                                                                       pH = 10.34
                                                                                                                                                     pΗ
                                                                                                                                                                                                                                                                            D
                                                                                                                                                                                                                                                                                          D
                                                                                                                                                                                                                                                                                                                               pH = 13.70
                                                                                                                                                                                                                                                                                                                                              See answer
                                                                                                        pH =
                                                                                                                                                                                                                                       D
                                                                                                                                                                                                                                                                                   2.3g NaOH
                                                                                                                                                                                                                                                                                                                         D
                                             C >
                                                            pH = 4.25
                                                                                                                                             pH = 8.68
                                                                                                                                                                                                                                                              D
Kb = 3.6 \times 10^{-4}
               C > C
                                                                  [NH_3] = 0.279M
                                                                           pH = 12.36
                                                                                  pH = 4.74
                                                                                         pH = 11.79
                                                                                                pH = 11.50
                                                                                                                        pH = 3.67
                                                                                                                              pH = 9.88
                                                                                                                                                                            D
                                                                                                                                                                                    U
                                                                                                         7.39
                                                                                                                10.30
```

204. 204. 205. 206. 207. 208. 209. 210. 211. 211.	194. 195. 196. 197. 198. 199. 200. 201. 202.	182. 183. 184. 185. 186. 187. 188. 189. 190.	167. 168. 169. 170. 171. 172. 173. 174. 175. 177. 177. 178. 179.
	C A B B B See answer D	B D C C See answer See answer C C B B	$a = 1.5 \times 10^{-2};$ $a = 9.1 \times 10^{-8};$ $b = 1.5 \times 10^{-10};$ $a = 5.9 \times 10^{-2};$ $a = 2.8 \times 10^{-9};$ $b = 2.4 \times 10^{-12};$ $a = 2.4 \times 10^{-11};$
			acid = H_2SO_3 acid = H_2S ; $X' = C_6H_3COO'$
249. 250. 251. 252. 253. 254. b) Ka c) yelloy	240. 241. 242. 243. 244. 245. 246. 248.	227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237.	213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 222. 223. 223. 224. 225.
249. B 250. D 251. D 252. C 253. A 254. a) [HInd]=[Ind] b) Ka = 4x10 ⁻⁶ c) yellow, yellow, yellow yellow, blue, green	Z A A B D D B C B D D	00000440000	D B C D B C

```
257.
                                                                                                                                                                                                                                                                                                                                                                                                  259.
                                                                                                                                          282.
                                                                                                                                                                                                                                            273
                                                                                                                                                                                                                                                       272
                                                                                                                                                                                                                                                                  271.
                                                                                                                                                                                                                                                                             270.
                                                                                                                                                                                                                                                                                      269.
                                                                                                                                                                                                                                                                                                   268.
                                                                                                                                                                                                                                                                                                            267
                                                                                                                                                                                                                                                                                                                        266.
                                                                                                                                                                                                                                                                                                                                   265.
                                                                                                                                                                                                                                                                                                                                             264.
                                                                                                                                                                                                                                                                                                                                                       263.
                                                                                                                                                                                                                                                                                                                                                                  262
                                                                                                                                                                                                                                                                                                                                                                            261.
                                                                                                                                                                                                                                                                                                                                                                                         260.
                                                                                                                                                                                                                                                                                                                                                                                                               258.
                                                                                                                                                                                                                                                                                                                                                                                                                        c) Thymol blue, Thymophthalien
                                                                                                                                                                                                                                                                                                                                                                                                                                 b) because of buffering effect
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  blue, red, purple
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              yellow, orange, amber
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        b) orange, yellow, amber
                                                                                                                                                      281.
                                                                                                                                                                 280.
                                                                                                                                                                                                                       275.
                                                                                                                                                                                                                                  274
          288.
                    287.
                               286.
                                                                                                                     283. A) 0.0125L NaOH
b) H<sub>3</sub>O<sup>+</sup>+ OH <-> 2H<sub>2</sub>O
                                                                                                                                                                           279.
                                                                                                                                                                                       278.
                                                                                                                                                                                                  277.
                                                                                                                                                                                                             276.
                                          285.
                                                                           284.
                                                                                                           c) vol of base will not change, because
                                                    c) SB/WA graph
                                                             b) equivalence point pH >7
                                                                                    completion (1:1 ratio)
                                                                                               strong acid results in rxn going to
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  a) Ka = 5.0 \times 10^{-8}
                                                                                                                                                                                                                                                                                                                                                                                                                                              a) WA/SB
                                                                          A) SA/SB graph
                                B
                     D
                                                                                                                                                                                               [NaOH] = 0.567M
                                                                                                                                                                                                          [Ba(OH)_2] = 0.0426M
                                                                                                                                                                                                                                                                                                                                                        303
                                                                                                                                                                                                                                                                                                                                                                              301
                                                                                                                                                                                                                                                                                                                                                                                         300.
                                                                                                                                                                                                                                                                                                                                                                                                   299
                                                                                                                                                                                                                                                                                                                                                                                                               298
                                                                                                                                                                                                                                                                                                                                                                                                                         297.
                                                                                                                                                                                                                                                                                                                                                                                                                                    296.
                                                                                                                                                                                                                                                                                                                                                                                                                                               295
                                                                                                                                                                                                                                                                                                                                                                                                                                                           294
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     293
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                292
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          291
                                                                                                                                                                                                                       315
                                                                                                                                                                                                                                  314
                                                                                                                                                                                                                                                                                                   308.
                                                                                                                                                                                                                                                                                                                        306.
                                                                                                                                                                                                                                                                                                                                   305
                                                                                                                                                                                                                                                                                                                                             304
                                                                                                                                                                                                                                                                                                                                                                    302
                                                                                                                                                                              319.
                                                                                                                                                                                        318.
                                                                                                                                                                                                             316.
                                                                                                                                                                                                                                             313
                                                                                                                                                                                                                                                        312
                                                                                                                                                                                                                                                                              310
                                                                                                                                                                                                                                                                                         309
                                                                                                                                                                                                                                                                                                              307
328.
          327.
                                                      324.
                                                                 323.
                                                                            322.
                      326.
                               b) add = amounts of WA to its CB
                                                                                       321.
                                                                                                 c) volume of SB will be equal
                                                                                                                     b) SA/SB produces a neutral salt,
                                                                                                                                  320.
                                                                                                                                            c) Phenophthalien
                                                                                                                                                       b) see answer
                                                                                                           WA/SB produces a basic salt
                                                                                                                                                                  action
                                                                                                                                                                                                                                                                                                                                                                          Hq
                                                                                                                                A) B, pH >7; A, pH = 7
                                                                                                                                                                                                                                                                                                                                                                                                                                   NH^{4+}
                                                                                                                                                                           a) HB, initial pH >1, buffering
                                                                                                                                                                                                                                                                                                                                                                                                                                                          D
                                                                                                                                                                                                                                                                                                                                                                                         \square
                                          a) to resist pH change
                                                                                       \square
                                                                                                                                                                                                                                                                              D
                                                                                                                                                                                                                                                                                                                                                                                11
                                                                                                                                                                                                                                                                                                                                                                                                                                   + OH \rightarrow H_2O + NH_3
                                                                                                                                                                                                                                                                                                                                                                               2.0
```

364. a) H ₂ PO ₄ b) MgO c) SO ₂	G B	363. a)Ti(OH) ₂ basic	b) ignore	362. a) Ba(OH) ₂ basic	361. B		358. C	357. D	356. A	355. A	354 see answer		c) pH would decrease	b) $pH = 6.8-7.8$	upsetting blood pH	351. a) prevents CO_2 loss from	350. D	349. A	348. A	347. B	346. A	345. A	344. B		341. B		339. A	338. B	337. B	336. B	335. B	334. C	333. D	332. B	331. A	330. B	
							•																														
402. 403. 404. 405.	b) amber, 401. C	400.	398.	397.	396.	395.	393.	392.	391.	390.	[II]		388.	387.	386.	385.	384.	383.	382.	381.	380.	379.	378.) i	375.	374.	373.	372.	371.	370.	369.	368.	367.	366.	c) NO_2	b) CaO	365.
B B	ber, due to pH = 6.70	A a) $pH = 6.70$	> > > > > > > > > >	В	D	a t	B	A	В	pH = 3.35	III II	[H'] in HCl = 0.10 M	A	A	A	ä	D	A	C	В	A	C	C		ם ש	D	C	D	D	B	Α	В	D	C	2		a) ignore

Prescribed Learning Outcomes - Chemistry 12

Acid / Base Section

J: Acids, Bases, and Salts (Properties and Definitions)

J1:	Identify	acids and	bases	through	experimentatio	1
-----	----------	-----------	-------	---------	----------------	---

- List general properties of acids and bases
- Write balanced equations representing the neutralization of acids by bases in solution
- Define Arrhenius acids and bases
- Write names and formulae of some common acids and bases and outline some of their common properties, uses, and commercial names
- Define Brönsted-Lowry acids and bases J6:
- Identify Brönsted-Lowry acids and bases in an equation
- Write balanced equations representing the reaction of acids or bases with water
- Identify an H₃O+ ion as a protonated H₂O molecule that can be represented in shortened form as H+(an)
- Define conjugate acid-base pair J10:
- Identify the conjugate of a given acid or base J11:
- Show that in any Bronsted-Lowry acid-base equation there are two conjugate pairs present

K: Acids, Bases, and Salts (Strong and Weak Acids and Bases)

- Relate electrical conductivity in a solution to the concentration of ions
- Classify an acid or base in solution as either weak or strong by comparing conductivity
- Define a strong acid and a strong base
- Define a weak acid and a weak base
- Write equations to show what happens when strong and weak acids and bases are dissolved in water (dissociation, ionization)
- Compare the relative strengths of acids or bases by using a table of relative acid strengths
- Identify and explain why the strongest acid in aqueous solutions is H₂O⁺ and the strongest base in aqueous

Predict whether products or reactants are favoured in an acid-base equilibrium by comparing the strength of

the two acids (or two bases)

- Compare the relative concentrations of H,O+ (or OH) between two acids (or between two bases) using their relative positions on an acid strength table
- K10: Define amphiprotic
- Identify chemical species that are amphiprotic
- Describe situations in which H₂O would act as an acid or base K12:

L: Acids, Bases, and Salts (K_{n}, pH, pOH)

- Write equations representing the ionization of water using either H₂O+ and OH or H+ and OH L1:
- Write the equilibrium expression for the ion product constant of water, K_{ω} L2:
- Predict the effect of the addition of an acid or base to the equilibrium system: L3:

2 H₂O₍₁₎
$$\Leftrightarrow$$
 H₃O⁺_(aq) + OH⁻_(aq)

- State the relative concentrations of H₂O⁺ and OH in acid, base, and neutral solutions L4:
- State the value of K_{-} at 25°C L5:
- Describe the variation of the value of K, with temperature
- Calculate the concentration of H_0O^+ (or OH) given the other, using K_w L7:
- Describe the pH scale with reference to everyday solutions L8:
- Define pH and pOH L9:
- Define pK, give its value at 25°C, and its relation to pH and pOH L10:
- Perform calculations relating pH, pOH, [H,O+], and [OH-] LII:
- Calculate H₃O+, or OH from pH and pOH L12:

M: Acids, Bases, and Salts (K, and K, Problem Solving)

- Write K_a and K_k equilibrium expressions MI:
- Relate the magnitude of K_a or K_b to the strength of the acid or base M2:
- Given the K_a , K_b , and initial concentration, calculate any of the following: M3:

- Calculate the value of K_k for a base given the value of K_k for its conjugate acid (or vice versa)
- Calculate the value of K_a or K_b given the pH and initial concentration

N: Acids, Bases, and Salts (Hydrolysis of Salts)

Write a dissociation equation for a salt in water

Write net ionic equations representing the hydrolysis of salts

Predict qualitatively whether a salt solution would be acidic, basic, or neutral

Determine whether an amphiprotic ion will act as a base or an acid in solution

O: Acids, Bases, and Salts (Indicators)

Describe an indicator as a mixture of a weak acid and its conjugate base, each with distinguishing colours

Describe the term transition point of an indicator, including the conditions that exist in the equilibium

system

Describe the shift in equilibrium and resulting colour changes as an acid or a base is added to an indicator

Predict the approximate pH at the transition point using the K_a value of an indicator

Predict the approximate K_a value for an indicator given the approximate pH range of the colour change

P: Acids, Bases, and Salts (Neutralizations of Acids and bases)

Demonstrate an ability to design and perform a neutralization experiment involving the following:

- primary standards
- standardized solutions
- titration curves
- indicators selected so the end point coincides with the equivalence point

Calculate from titration data the concentration of an acid or base

Calculate the volume of an acid or base of known molarity needed to neutralize a known volume of a

known molarity base or acid

Write formula, complete ionic, and net ionic neutralization equations for:

- a strong acid by a strong base
- a weak acid by a strong base
- a strong acid by a weak base

Calculate the pH of a solution formed when a strong acid is mixed with a strong base

Contrast the equivalence point (stoichiometric point) of a strong acid-strong base titration with the

equivalence point of a titration involving a weak acid-strong base or strong acid-weak base

O: Acids, Bases, and Salts (Buffer Solutions)

Describe the tendency of buffer solutions to resist changes in pH

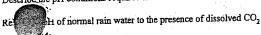
Describe the composition of an acidic buffer and a basic buffer

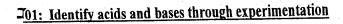
Outline a procedure to prepare a buffer solution

Identify the limitations in buffering systems

Describe qualitatively how the buffer equilibrium shifts as small quantities of acid or base are added

to the buffer


Describe common buffer systems present in industrial, environmental, or biological systems


R: Acids, Bases, and Salts (Acid Rain)

Write equations representing the formation of acidic solutions or basic solutions from non-metal

and metal oxides

Describe the pH conditions required for rain to be called acid rain

- 1. Which of the following tests could be used to distinguish between 1.0 M HCl and 1.0 M NaOH?
 - I. electrical conductivity
 - II. reaction with zinc to produce hydrogen gas
 - III. reaction with red litmus paper turning blue
 - A. III only
 - B. I and II only
- C. II and III only
- D. I. II and III

J02: List general properties of acids and bases

- 2. The property common to both 0.10 M HCl and 0.10 M NaOH is that both solutions
 - A. taste bitter
 - B. have a pH > 7
 - C. conduct electricity
 - D. react with magnesium to produce hydrogen gas
- 3. Which of the following is generally true of acids, but not for bases?

reaction

A. pH > 7

D.

- B. releases protons in solution
- C. conducts electrical current well in solution
- D. feels slippery

blue

4. Which of the following best describes an acidic solution?

•	44.7	MON OF MIC TONIO	
		Litmus Colour	Reaction with Z
	A.	red	reaction
	B.	red	no reaction
	0	hlyo	no reaction

J03: Write balanced equations representing the neutralization of eacids by bases in solution

- 5. Which of the following represents the complete neutralization of H₃PO₄ by NaOH?
- A. $H_3PO_4 + NaOH \rightarrow H_2O + NaH_2PO_4$
- B. $H_3PO_4 + 3NaOH \rightarrow 3H_2O + Na_3PO_4$
- C. $H_3PO_4 + 2NaOH \rightarrow 2H_2O + Na_2HPO_4$
- D. H₃PO₄ + NaOH \rightarrow H₂O + NaH + HPO₄

- 6. Which of the following represents the complete neutralization of H₂CO₃ by NaOH?
- A. H₂CO₂ + NaOH → H₂O + NaHCO₃
- B. $H_2CO_3 + 2NaOH \rightarrow 2H_2O + Na_2CO_3$
- C. H_2CO_3 + NaOH \rightarrow H_3O^+ + NaCO₃ ·
- D. $H_2CO_3 + 2NaOH \rightarrow 2H_2O + Na_2O + CO_2$
- 7. Which of the following represents the neutralization reaction between Ca(OH)_{2(s)} and HCl_(an)?
- A. $H_2O_{(1)} \rightarrow H^+_{(aq)} + OH^-_{(aq)}$
- B. $Ca^{+2}_{(aq)} + 2Cl_{(aq)} \rightarrow CaCl_{2(s)}$
- C. $Ca(OH)_{2(s)} + 2HCl_{(aq)} \rightarrow CaCl_{2(aq)} + 2H_2O_{(1)}$
- D. $Ca^{+2}_{(aq)} + 2OH^{-}_{(aq)} + 2H^{+}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow CaCl_{2(s)} + 2H_{2}O_{(l)}$
- 8. When a small solid sample is added to a solution of H₂SO₄, a precipitate forms and the solution becomes less acidic. Which of the following substances could have caused these results?
 - A. MgSO₄
- B. Ba(OH)₂
- C. Cu(OH)₂ LS
- D. Ba(NO₃)₂

J04: Define Arrhenius acids and bases

- 9. An Arrhenius base is defined as a compound that
 - A. accepts OH- in solution
 - B. releases OH in solution
 - C. accepts protons in solution
 - D. releases protons in solution
- 10. A substance which produces hydroxide ions in solution is a definition of which of the following?
 - A. an Arrhenius acid
 - B. an Arrhenius base
 - C. a Bronsted-Lowry acid
 - D. a Bronsted-Lowry base

J05: Write names and formulae of some common acids and bases and outline some of their common properties, uses, and commercial names

- 11. Which of the following is a common base found in drain cleaners?
 - A. bleach
- B. vinegar
- C. milk of magnesia D. sodium hydroxide

J06: Define Bronsted-Lowry acids and bases

J07: Identify Bronsted-Lowry acids and bases in an equation

12. Consider the following Bronsted-Lowry equilibrium:

$$C_6H_5NH_{2 (aq)} + H_2O_{(1)} = C_6H_5NH_3^{+}_{(aq)} + OH_{(aq)}^{-}$$

The substances acting as acids and bases from left to right are:

- A. acid, base, acid, base
- B. acid, base, base, acid
- C. base, acid, acid, base
- D. base, acid, base, acid
- 13. In which of the following is HSO₃ acting as a Bronsted-Lowry acid?
 - A. $HSO_3^- + H_2O \rightarrow H_2SO_3 + OH^-$
 - B. $NH_3 + HSO_3^- \rightarrow NH_4^+ + SO_3^{-2}$
 - C. $HSO_3^- + HPO_4^{-2} \rightarrow H_2SO_3 + PO_4^{-3}$
 - D. $H_2C_2O_4 + HSO_3^- \rightarrow HC_2O_4^- + H_2SO_3^-$
- 14. Select the equation that best represents the reaction of CH₃NH₂ acting as a base with water.
 - A. $CH_3NH_{2(aq)} + H_2O_{(1)} = CH_3NH_{3^+(aq)} + OH_{(aq)}$
 - $B \sim CH_3NH_{2(aq)} + H_2O_{(1)} = CH_3NH_{(aq)} + H_3O_{(aq)}$
 - C. $CH_3NH_{2(aq)} + H_2O_{(1)} = CH_3NH_2OH_{(aq)} + H_{(aq)}$
 - D. $CH_3NH_{2(aq)} + H_2O_{(1)} = CH_3^+_{(aq)} + NH_{3(aq)} + OH_{(aq)}$
- 15. Consider the following equilibrium:

$$HCO_3$$
 + H_2PO_4 \Rightarrow HPO_4^{-2} + H_2CO_3

What are the Bronsted-Lowry acids in this equilibrium?

- A. HCO3- and H2CO3
- B. HCO3- and HPO4-2
- C. H₂PO₄ and H₂CO₃
- D. H₂PO₄ and HPO₄-2
- 16. Consider the following equilibrium:

$$HCO_3 + H_2C_6H_5O_7 =$$

What are the Bronsted-Lowry acids in this equilibrium?

- A. H₃C₆H₅O₇ and H₂CO₃
- B. HCO₃ and HC₆H₅O₇-2
- C. H₂C₆H₅O₇ and H₂CO₃
- D. H₂C₆H₅O₇ and CO₃-2

- 17. a. Write an equation to represent the predominant reaction when $HC_2O_4^-$ is mixed with HSO_4^- .
 - c. Identify a conjugate acid-base pair.
 - d. Predict whether the equilibrium will favour the formation of reactants or products. Explain.

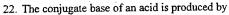
- 18. a. Write an equation to represent the predominant reaction when HCO3- is mixed with HSO3-.
 - b. Justify your statement by comparing K_a values.
 - c. Identify a conjugate acid-base pair.
 - d. Predict whether the equilibrium will favour the formation of reactants or products. Explain.

J08: Write balanced equations representing the reaction of acids or bases with water

A.
$$H_2O_2 + H_2O \rightarrow 3OH + H +$$

B.
$$H_2O_2 + H_2O \rightarrow O_2^{-2} + H_2O$$

B.
$$H_2O_2 + H_2O \rightarrow H_3O_2 + OH$$
C. $H_2O_2 + H_2O \rightarrow H_3O_2 + OH$


D.
$$H_2O_2 + H_2O \rightarrow HO_2 + H_3O +$$

<u>J09</u>: <u>Identify an H_30^+ ion as a protonated H_20 molecule that can be represented in shortened form as H^+ (aq)</u>

J10: Define conjugate acid-base pair

- 20. The two reactants in an acid/base reaction are ${\rm HSO_3^-}_{(aq)}$ and ${\rm HSO_4^-}_{(aq)}$
 - a. Write the equation for the above reaction.
 - b. Define the term conjugage acid/base pair.
 - c. Write the formulas for a conjugate acid/base pair for the above reaction.
- 21. The two reactants in an acid/base reaction are ${\rm HSO_{3^-(aq)}}$ and ${\rm HC_2O_{4^-(aq)^-}}$
 - a. Write the equation for the above reaction.
 - b. Define the term conjugage acid/base pair.
 - c. Write the formulas for a conjugate acid/base pair for the above reaction.

J11: Identify the conjugate of a given acid or base

- A. adding a proton to the acid.
- B. adding an electron to the acid.
- C. removing a proton from the acid.
- D. removing an electron from the acid.

A. C₆H₅NH⁻

B. C₆H₅NH₃

C. $C_6H_5NH_2^+$

D. C₆H₅NH₃+

24. The conjugage base of HBO₃-2 is

A. H₂BO₃-

B. BO₃-2

C. BO₃-3

D. H₂BO₃-2

25. What is the conjugate base of H₂PO₄ -?

A. OH-

B. HPO₄ -2

C. PO₄ -3

D. H₃PO₄

26. What is the conjugate acid of HPO₄ -2?

A. H₃O +

B. H₂PO₄ -

C. PO₄ -3

D. H₃PO₄

27. Identify a conjugate pair from the equilibrium provided:

$$PO_4^{-3} + HCO_3^{-1} = HPO_4^{-2} + CO_3^{-2}$$

- A. CO₃ -2 and PO₄ -3
- B. PO₄ -3 and HCO₃ -
- C. PO_4 -3 and HPO_4 -2.
- D. HCO₃- and HPO₄ -2

J12: Show that in any Bronsted-Lowry acid-base equation there are two conjugate pairs present

28. Consider the following equilibrium:

$$H_2C_2O_{4(aq)} + HPO_{4^{-2}(aq)} = H_2PO_{4^{-2}(aq)} + HC_2O_{4^{-2}(aq)}$$

In the above equilibrium, a conjugage pair is

A. HC₂O₄ and HPO₄-2

- B. HC₂O₄ and H₂PO₄
- C. HPO₄-2 and H₂PO₄-
- D. H₂C₂O₄ and H₂PO₄

29. Consider the following equilibrium:

$$H_2C_2O_4_{(aq)} + HPO_4^{-2}_{(aq)} = H_2PO_4_{(aq)} + HC_2O_4_{(aq)}$$

In the above equilibrium, the two acids are

- A. HC₂O₄ and HPO₄-2
- B. HC₂O₄ and H₂PO₄
- C. HPO₄-2 and H₂PO₄-
- D. H₂C₂O₄ and H₂PO₄
- 30. Consider the following reaction:

$$H_2SO_3 + CH_3NH_2 = HSO_3 + CH_3NH_3 +$$

Which of the following describes a conjugate acid-base pair in the equilibrium above?

Acid

Base

A. HSO₃-

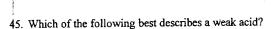
 H_2SO_3

B. CH₃NH₃⁺

HSO₃-

C. H₂SO₃

CH₃NH₃+


D. $CH_3NH_3^+$ CH_3NH_2

31. An solution of $HC_2O_4^{-1}$ (aq) turns blue litmus paper red. Write a balanced equation to represent the equilibrium between the $HC_2O_4^{-1}$ and H_2O .

K01: Relate electrical conductivity in a solution to the concentration of ions

- 32. Which of the following acids will have the lowest conductivity?
 - A. 0.010 M HCl
 - B. 0.010 M HNO₂
 - C. $0.010 \text{ M H}_2\text{SO}_3$
 - D. 0.010 M H₃BO₃

1	33. Which of the following will have the lowest electrical conductivity?	41. Which of the following solutions would typically show the greatest electrical conductivity?
1	A. 1.00 M HCl	A. $1.0 \mathrm{MHNO_2}$
	B. 1.00 M LiNO ₂	B. 0.8 M NH ₃
	C. 1.00 M NaH ₂ PO ₄	C. 0.5 M NaCH ₃ COO
	D. $1.00 \text{ MH}_2\text{SO}_3$	D. 0.1 M KOH
	34. Which of the following is correct if the four solutions listed are compared to one another? Belative Conductivity Ionization	42. Describe two lab tests and how their outcomes could be used to distinguish between a strong
	Concentration	acid and weak acid of equal molar concentrations.
	A strong acid U.SU M lightest	
	B. weak acid 0.50 M complete	Test #1:
	C. strong base 1.0 M inglest	Outcome:
	D. Weak base	Outcome:
	35. Which of the following 1.0 M solutions will have the highest electrical conductivity? D. HNO ₂	
	B. HF C. HCN D. HNO ₂	
	36. Which of the following 1.0 M solutions will have the lowest electrical conductivity? D. HNO2	Test #2:
	A. H ₂ CO ₃ B. HCOOH C. HCN D. HNO ₂	
		Outcome:
	37. Which of the following 1.0 M solutions will have the lowest electrical conductivity? D. HNO ₃	
	A. H ₂ CO ₃ B. NH ₄ Cl C. NaCN D. HNO ₃	
	the state of the s	
	38. Which of the following solutions will show the greatest electrical conductivity?	
	A. 0.1 M HCl	K03: Define a strong acid and a strong base
	B: $0.5 \mathrm{M}\mathrm{H}_2\mathrm{CO}_3$	
	C. 0.5 M H ₃ BO ₃	61.0 M CH2COOH?
	D. $0.1 \text{ M H}_2\text{C}_2\text{O}_4$	43. Which of the following is a property of 1.0 M HCl but not a property of 1.0 M CH ₃ COOH?
	39. Which of the following saturated salt solutions would have the greatest electrical conductivity? C. Ag ₂ CrO ₄ D. Ba ₃ (PO ₄) ₂	A. turns litmus paper red
	39. Which of the following saturated sait solutions (C. Ag ₂ CrO ₄ D. Ba ₃ (PO ₄) ₂ A PbS B. CsNO ₃ C. Ag ₂ CrO ₄ D. Ba ₃ (PO ₄) ₂	B. ionizes completely
	A. Pos	C. has a pH less than 7.0 D. produces H ₃ O + in solution
	(02: Classify an acid or base in solution as either weak or strong by comparing	D. produces rigo in solution
<u>K</u>	02: Classify an acid of base in solution as	wroten or the side and a weak hose
co	onductivity	K04: Define a weak acid and a weak base
	121- shoomed?	
	40. When comparing equal volumes of 0.10 M HNO ₃ with 0.10 M HNO ₂ , what would be observed?	44. Which of the following statements applies to 1.0 M NH _{3 (aq)} but not to 1.0 M NaOH (aq)?
	A The all values would be the same.	A. partially ionizes
	The electrical conductivities would be the different.	B. is a weak acid
	- con Line literary paper would be the different.	C. has a pH greater than 7.0
	D. The amount of NaOH needed for neutralization would be different.	D. has $[H_3O^+] > [OH^-]$

- A. Its 0.10 M solution will have a pH = 1.00.
- B. It may be very soluble, but only partially ionized.
- C. It must be very soluble and completely ionized.
- D. It must be of low solubility and completely ionized.

K05: Write equations to show what happens when strong and weak acids and bases are dissolved in water

40	6. An acid is added to water and an new equilibrium is established.	The new equilibrium can be
	described by	

- A. $pH < pOH \text{ and } K_w = 1 \times 10^{-14}$
- B. pH < pOH and $K_w < 1 \times 10^{-14}$
- C. pH > pOH and $K_w = 1 \times 10^{-14}$
- D. $pH > pOH \text{ and } K_w > 1 \times 10^{-14}$

47. KOH is added to water and a new equilibrium is established. The new equilibrium can be described by

- A. pH < pOH and $K_w = 1 \times 10^{-14}$
- B. pH < pOH and $K_w < 1 \times 10^{-14}$
- C. $pH > pOH \text{ and } K_w = 1 \times 10^{-14}$
- D. pH > pOH and $K_w > 1 \times 10^{-14}$

48. Which of the following represents the predominant reaction between NH₃ and H₂O?

- A. $NH_3 + H_2O = NH_3O + H_2$
- B. $NH_3 + H_2O \Rightarrow NH_4 + OH$
- C. $NH_3 + H_2O \implies NH_5^{+2} + O^{-2}$
- D. $NH_3 + H_2O = H_3O + NH_2$

49. Which equation best describes the interaction of a weak base with water?

- A. NaOH $(aq) \rightarrow Na^+(aq) + OH^-(aq)$
- B. CH₃CH₂OH (1) → CH₃CH₂OH (aq)
- C. $HPO_4^{-2}(aq) + H_2O(l) = PO_4^{-3}(aq) + H_3O^{+}(aq)$
- D. N_2H_4 (aq) + H_2O (l) \Rightarrow $N_2H_5^+$ (aq) + OH^- (aq)

K06: Compare the relative strengths of acids or bases by using a table of relative acid strengths

50. Consider the following equilibrium:

$$H_2C_2O_4_{(aq)} + HPO_4^{-2}_{(aq)} \iff H_2PO_4_{(aq)} + HC_2O_4_{(aq)}$$

In the above equilibrium, the strongest acid is

- A. HC₂O₄-
- B. H₂PO₄-
- C. HPO_4^{-2}
- D. H₂C₂O₄
- 51. The strength of the acids HCl, H₂SO₃ and H₃PO₄ from weakest to strongest is
 - A. $HCl < H_3PO_4 < H_2SO_3$
 - B. $HCl < H_2SO_3 < H_3PO_4$
 - C. $H_2SO_3 < H_3PO_4 < HC1$
 - D. $H_3PO_4 < H_2SO_3 < HCI$
- 52. The strength of the ions HC₂O₄-, HSO₃- and H₂PO₄- from weakest to strongest <u>acid</u> is
 - A. $HC_2O_4^- < H_2PO_4^- < HSO_3^-$
 - B. $HC_2O_4^- < HSO_3^- < H_2PO_4^-$
 - C. $HSO_3^- < H_2PO_4^- < HC_2O_4^-$
 - D. $H_2PO_4^- < HSO_3^- < HC_2O_4^-$
- 53. Which of the following is the weakest base?
 - A. F-
- B. HS-
- C. CN-
- D. IO₃

- 54. Which of the following is the weakest acid?
 - A. HSO₃-
- B. H_2PO_4
- C. HCO₃-
- D. HC_2O_4

- 55. Which of the following is the weakest base?
 - A. HSO₃-
- B. H₂PO₄-
- C. HCO₃-
- D. HC₂O₄

K07: Identify and explain why the strongest acid in aqueous solutions is H₃0⁺ and the strongest base in aqueous solution is OH-

- 56. Aqua regia is a concentrated aqueous solution of HCl and HNO₃. The strongest acid in aqua regia is
 - A. HC
- B. H₂O
- C. HNO₃
- D. H₃O +
- 57. Which of the following is the strongest base that can exist in an aqueous solution?
 - A. NH₂
- B. PO₄-3
- C. H₃O +
- D. OH-

K08: Predict whether products or reactants are favoured in an acid-base equalibrium by comparing the strength of two acids or bases

58. Which of the following reactions favours the formation of products?

A.
$$HNO_2 + F = HF + NO_2$$

B.
$$H_2CO_3 + IO_3 - \leftrightarrows HIO_3 + HCO_3$$

C.
$$NH_4^+ + C_2O_4^{-2} = HC_2O_4^- + NH_3$$

59. In which of the following are reactants favoured?

A.
$$HNO_2 + CN^- \Rightarrow NO_2^- + HCN$$

B.
$$H_2S + HCO_3$$
 \rightleftharpoons $HS^- + H_2CO_3$

C.
$$H_3PO_4 + NH_3 = H_2PO_4 + NH_4$$

D.
$$CH_3COOH + PO_4^{-3} \subseteq CH_3COO^- + HPO_4^{-2}$$

60. Consider the following equilibrium:

$$HF_{(aq)} + HPO_4^{-2}_{(aq)} = F_{(aq)} + H_2PO_4^{-}_{(aq)}$$

For the above equilibrium, identify the weaker acid and determine whether reactants or products are favored.

Weaker Acid Side favored
A. HF products
B. HF reactants
C. H₂PO₄ products

D. H₂PO₄

reactants

61. Consider the following equilibrium:

$$HF_{(aq)} + HPO_4^{-2}_{(aq)} = F_{(aq)} + H_2PO_4^{-1}_{(aq)}$$

For the above equilibrium, identify the stronger acid and determine whether reactants or products are favored.

Stronger Acid Side favored
A. HF products
B. HF reactants
C. H₂PO₄ products
D. H₂PO₄ reactants

62. Consider the following equilibrium:

$$H_2SO_3_{(aq)} + H_2PO_4_{(aq)} = HSO_3_{(aq)} + H_3PO_4_{(aq)}$$

For the above equilibrium, identify the stronger acid and determine whether reactants or products are favored.

Stronger Acid	Side favored
A. H ₂ SO ₃	products
B. H ₂ SO ₃	reactants
C. H ₃ PO ₄	products
D. H ₂ PO ₄	reactants

63. Consider the following equilibrium:

$$HCO_3^- + H_2PO_4^- \Rightarrow H_2CO_3 + HPO_4^{-2}$$

Which of the following statements is true?

- A. Products are favored because H₂PO₄ is a stronger acid than H₂CO₃
- B. Products are favored because H₂PO₄ is a stronger acid than HPO₄-2
- C. Reactants are favored because HCO₃ is a stronger base than H₂CO₃
- D. Reactants are favored because H₂CO₃ is a stronger acid than H₂PO₄
- 64. An acid-base reaction occurs between H₂PO₄- and HC₂O₄- Write the equation for the equilibrium that results.

A. $H_2PO_4^- + HC_2O_4^- = H_3PO_4 + H_2C_2O_4$

B. $H_2PO_4^- + HC_2O_4^- = H_3PO_4 + C_2O_4^{-2}$

C. $H_2PO_4^- + HC_2O_4^- = HPO_4^{-2} + H_2C_2O_4$

D. $H_2PO_4^- + HC_2O_4^- \Rightarrow HPO_4^{-2} + C_2O_4^{-2}$

65. Consider the following equilibrium:

$$H_3AsO_4 + HSeO_3 - + H_2AsO_4 + H_2SeO_3$$

Reactants are favored in this equilibrium. Which of the following describes the relative strengths of the acids?

Stronger Acid Weaker Acid
A. H₂SeO₃ H₃AsO₄
B. HSeO₃ H₂AsO₄
C. H₃AsO₄ H₂SeO₃
D. H₂AsO₄ HSeO₃

66 . Consider the following acid-base equilibria and their $K_{\rm eq}$:	68. An acid-base reaction occurs between HSO ₃ ⁻ and HCO ₃ ⁻
(A) $H_2AsO_4^{-1} + HSO_3^{-} \implies HAsO_4^{-2} + H_2SO_3 K_{eq} = 4.2 \times 10^{-3}$ (B) $HSeO_4^{-1} + H_2AsO_4^{-1} \implies HAsO_4^{-2} + H_2SeO_4 K_{eq} = 1.2 \times 10^{-1}$	a. Write the equation for the equilibrium that results.
(C) $H_3AsO_4 + HSO_3^- \Rightarrow H_2AsO_4^{-1} + H_2SO_3 K_{eq} = 7.9 \times 10^4$ a. Write the formula of the weaker acid in equation (A)	b. Identify one conjugate acid-base pair in the reaction.
b. Write the formula of the weaker acid in equation (B)	c. State whether reactants or products are favored and explain how you arrived at your answer.
c. Write the formula of the weaker acid in equation (C)	
d. List the acids from the equilibria above in order from weakest acid to strongest acid.	
	69. a. Write the equation to represent the reaction that results when NH_4^+ ions are mixed with HCO_3^- ions.
7. Consider the acids HCl and HF.	
a. Only one of the following reactions occurs. Complete the equation of the reaction which does occur.	b. Identify the two bases in the reaction in part a)
i) HCl + F ⁻ →	
ii) HF + Cl⁻ →	c. Predict whether the reaction will favour the reactants or products. Justify your answer.
b. For the reaction that occurs, are the reactants or products favored? Explain.	Prediction:
	Justification:
	K09: Compare the relative concentrations of H ₃ 0 ⁺ or OH ⁻ between two acids or bases using their relative positions on an acid strength table
	70. Which of the following 1.0 M solutions will have the lowest [H ₃ O ⁺]? A. H ₂ S B. HNO ₂ C. H ₂ CO ₃ D. CH ₃ COOH

- 71. The ionization of water can be represented by:
 - A. $2H_2O_{(1)} \rightarrow 2H_{2(g)} + O_{2(g)}$
 - B. $H_2O_{(1)} \rightarrow 2H^+_{(aq)} + O^{-2}_{(aq)}$
 - C. $2H_2O_{(1)} \rightarrow H_3O_{(aq)} + OH_{(aq)}$
 - D. $2H_2O_{(1)} \rightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$
- 72. Given a 1.0 M solution of HI, which sequence best describes the equilibrium concentration of the substances in the solution?
 - A. $[H_3O^+] > [I^-] > [OH^-] > [HI]$
 - B. $[HI] > [H_3O^+] > [I^-] > [OH^-]$
 - C. $[H_3O^+] = [I^-] > [OH^-] > [HI]$
 - D. $[H_3O^+] > [HI] > [I^-] > [OH^-]$

K10: Define amphiprotic

- 73. The ion H₂PO₄ is an amphiprotic anion.
 - a. Define the term amphiprotic.
 - b. Write a balanced equation for the reaction when H₂PO₄ reacts with HCO₃.

K11: Identify chemical species that are amphiprotic

- 74. Which of the following are amphiprotic in aqueous solutions?
 - I. H₃BO₃
 - II. H₂BO₃-
 - Ш. HBO₃-2
 - IV. BO₃-3
 - A. I only
- B. IV only
- C. I and II only
- D. II and III only

K12: Describe situations in which H20 would act as an acid or base

75. Water will act as an acid when it reacts with which of the following:

I. CN-

II. NH₃

III. HClO₄

IV. CH₃COO

- A. I and IV only
- B. II and III only
- C. I, II, and IV only
- D. II, III and IV only

76. In which of the following reactions is water behaving as a Bronsted-Lowry acid?

- A. $2H_2O \rightarrow 2H_2 + O_2$
- B. $HCl + H_2O \rightarrow H_3O^+ + Cl^-$
- C. $NH_3 + H_2O \rightarrow NH_4 + OH_2$
- D. $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$

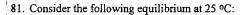
77. Water has the greatest tendency to act as an acid with which of the following?

- A. Cl-
- B. NO₂-
- C. H₂PO₄-
- D. CH₃COO-

78. Water has the greatest tendency to act as an acid with which of the following?

- A. HSO₃-
- B. HCO₃-
- C. H₂PO₄
- D. HC₂O₄-

79. Water has the greatest tendency to act as a base with which of the following?


- A. HSO₃-
- B. HCO₃-
- C. H₂PO₄-
- D. HC_2O_4

L01: Write equations representing the ionization of water using either H₃0⁺ and OH- or H⁺ and OH-

L02: Write the equilibrium expression for the ion product constant of water, Kw

80. Which of the following relationships is used to calculate K_w at 30°C?

- A. $K_w = pH + pOH$
- B. $K_w = -\log [H_3O^+]$
- C. $K_w = [H_3O^+][OH^-]$
- D. $K_w = [H_3O^+] + [OH^-]$

$$2H_2O_{(l)} = H_3O^+_{(aq)} + OH^-_{(aq)}$$

What happens to [OH-] and pH as 0.1 M HCl is added?

[OH-]

pН

A. decreases increases

B. decreases

decreases

C. increases

increases

D. increases

decreases

82. Consider the following equilibrium:

$$2H_2O_{(1)} = H_3O^+_{(aq)} + OH^-_{(aq)}$$

What changes occur to [H₃O⁺] and pH when NaOH is added?

[H₃O⁺]

pН

A. increases

increases

B. increases

decreases decreases

C. decreasesD. decreases

increases

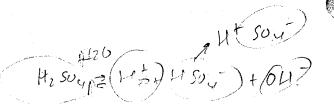
83. What happens to the ion concentrations in water when a small amount of HCl (aq) is added?

A.
$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

B. [H₃O⁺] and [OH⁻] both increase

C. [H₃O⁺] increases and [OH⁻] decreases

D. [H₃O⁺] increases and [OH⁻] stays unchanged


84. Consider the ionization of water:

$$2H_2O_{(1)} = H_3O^+_{(aq)} + OH^-_{(aq)}$$

What happens to the pH when 0.1 M NaOH is added to the water?

- A. pH increases since [H₃O⁺] increases
- B. pH increases since [H₃O⁺] decreases
- C. pH decreases since [H₃O⁺] increases
- D. pH decreases since [H₃O⁺] decreases

<u>L04</u>: State the relative concentrations of H₃0⁺ and OH⁻ in acid, base and neutral solutions

85. In a solution of 0.10 M H₂SO₄, the ions present in order of decreasing concentration are

$$A. [H_3O^+] > [HSO_4^-] > [SO_4^{-2}] \times [OH^-]$$

 $\sqrt{B. [H_3O^+] > [SO_4^{-2}] > [HSO_4^{-2}] > [OH^-]}$

 \sim C. [OH-] > [HSO₄-] > [SO₄-2] > [H₃O⁻¹]

D. $[SO_4^{-2}] > [HSO_4^{-}] > [OH^-] > [H_3O^+]$

86. Consider the following equilibrium:

$$2H_2O_{(1)}$$
 + energy \Rightarrow $H_3O_{(aq)}$ + $OH_{(aq)}$

The temperature is decreased and a new equilibrium is established. The new equilibrium can be described by

A. pH = pOH and $K_w > 1.0 \times 10^{-14}$

B. pH = pOH and $K_w < 1.0 \times 10^{-14}$

C. pH > pOH and $K_w = 1.0 \times 10^{-14}$

D. pH < pOH and $K_w = 1.0 \times 10^{-14}$

87. Consider the following equilibrium:

$$2H_2O_{(1)}$$
 + energy \Rightarrow $H_3O_{(aq)}$ + $OH_{(aq)}$

A few drops of HCl are added and a new equilibrium is established. The new equilibrium can be described by

A. pH = pOH and $K_w > 1.0 \times 10^{-14}$

B. pH = pOH and $K_w < 1.0 \times 10^{-14}$

C. pH > pOH and $K_w = 1.0 \times 10^{-14}$

D. pH < pOH and $K_w = 1.0 \times 10^{-14}$

88. Which of the following is true for pure water?

A. $[H_3O^+] = 0.0 M$

B. $[H_3O^+] = [OH^-]$

C. $[H_3O^+] > [OH^-]$

D. $[H_3O^+] < [OH^-]$

89. Which of the following is true for pure water at 5° C in which the pH = 7.53?

A. $[H_3O^+] = K_w$

B. $[H_3O^+] = [OH^-]$

C. $[H_3O^+] > [OH^-]$

D. $[H_3O^+] < [OH^-]$

90. Which of the following is true for pure water at 75°C in which the pH = 6.83?

A. $[H_3O^+] = K_w$

 $B. [H_3O^+] = [OH^-]$

C. $[H_3O^+] > [OH^-]$

D. $[H_3O^+] < [OH^-]$

91. Which of the following statements is true for an acidic solution at 25°C?

A. pH > 7.0

B. pOH < 7.0

C. $[H_3O^+] < [OH^-]$

D. $[H_3O^+] > [OH^-]$

L05: State the value of Kw at 250 C

L06: Describe the variation of the value of Kw with temperature

92. Consider the following equilibrium:

$$2H_2O_{(1)}$$
 + energy \Rightarrow $H_3O_{(aq)}$ + $OH_{(aq)}$

The [OH] will decrease and the $K_{\boldsymbol{w}}$ will decrease when

A. a strong acid is added

B. a strong base is added

C. the temperature is increased

D. the temperature is decreased

93. The ionization of water is endothermic. How is K_w related to the temperature of water?

A. Kw increases as temperature increases.

B. K_w decreases as temperature increases.

C. K_w increases as temperature decreases.

D. K_w remains constant as temperature decreases.

94. The ionization of pure water is shown by the reaction:

$$2H_2O_{(1)} + 57.1 \text{ kJ} + H_3O^+_{(aq)} + OH^-_{(aq)}$$

At a certain temperature the K_w of the water is 4.6×10^{-15} .

a. Is the temperature above or below 25°C? Explain your answer using the words exothermic or endothermic and Le Chatelier's Principle.

b. Calculate the pH and pOH of this water

c. Is the water acidic, basic or neutral? Explain your answer.

95. The ionization of pure water is shown by the reaction:

$$2H_2O_{(l)} + 57.1 \text{ kJ} = H_3O^+_{(aq)} + OH^-_{(aq)}$$

At a certain temperature the pH of the water is 7.27.

- a. Is the temperature above or below 25°C? Explain your answer using the words exothermic or endothermic and Le Chatelier's Principle.
- b. Is the water acidic, basic or neutral? Explain your answer.
- c. Calculate the K_w of water at this temperature.

96. Consider the following equilibrium:

energy +
$$2H_2O_{(1)} = H_3O_{(aq)} + OH_{(aq)}$$

- a. Explain how pure water can have a pH = 7.30.
- b. Calculate the value of K_w for the sample of water with a pH of 7.30.

- 97. At 10°C, the pH of pure water is 7.265.
 - a. Determine the pOH of water at 10°C.

b. Calculate Kw of pure water at 10°C.

L07: Calculate the concentration of H₃0⁺ or OH⁻ given the other, using K_w

- 98. What is the [OH-] of a solution with $[H_3O^+] = 9.3 \times 10^{-2}$?
 - A. 9.3 x 10⁻¹⁶ M
- B. $8.6 \times 10^{-13} M$
- C. 1.1 x 10⁻¹³ M
- D. 9.3 x 10⁻² M

- 99. What is the [OH-] in 0.025 M HCl?
 - A. 1.60 M
- B. 4.0 x 10⁻¹³ M
- C. 2.5 x 10⁻² M
- D. 12.40 M
- 100. At 20°C the ionization constant of water (K_w) is 6.76 x 10⁻¹⁵. Calculate the pOH of water at 20°C.

L08: Describe the pH scale with reference to everyday solutions

- 101. Which of the following household products could have a pH = 12.00?
 - A. soda pop
- B. tap water
- C. lemon juice
- D. oven cleaner

-1-			1 . 1	and distance	-TI - 2 00°
10	2 Which of t	he following	household products	could have a	pri = 5.00

- A. ammonia
- B. tap water
- C. lemon juice
- D. oven cleaner

103. Which of the following household products could have a pH = 7.00?

- A. soda pop
- B. tap water
- C. lemon juice
- D. oven cleaner

104. Which of the following is a typical pH value for dishwashing solutions?

- A. 2.0
- B. 4.0
- C. 10.0
- D. 14.0

L09: Define pH and pOH

L10: Define pKw, give its value at 25° C and its relation to pH and pOH

105. Consider the following statements about water at 60°C:

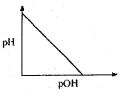
- I. The pH of water at 60° C < 7.00
- II The pOH of water at 60°C >7.00
- III. The pH = pOH of water at 60°C.

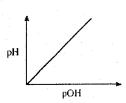
Which of the above statements are true?

- A. I and II
- B. I and III
- C. I, II and III
- D. III only

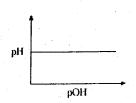
106. Which of the following is a definition of pKw?

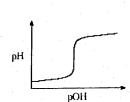
- A. $pK_w = -\log K_w$
- B. $pK_w = pH pOH$
- C. $pK_w = 7.0 \text{ at } 25^{\circ} \text{ C}$
- D. $pK_{w} = [H_{3}O^{+}][OH^{-}]$

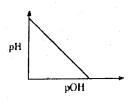

107. What is the value of pK_w for water at 25°C?

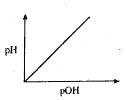

- A. 1.0×10^{-14}
- B. 1.0 x 10 -7
- C. 7.00
- D. 14.00

L11: Perform calculations relating pH, pOH, [H₃0⁺] and [OH-]

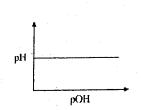

- 108. When the [H₃O⁺] in a solution is increased to twice the original concentration, the change in pH could be from
 - A. 1.7 to 1.4 \(\forall \)
- B. 2.0 to 4.0
- C. 5.0 to 2.5
- D. 8.5 to 6.5


109. Which of the following graphs describes the relationship between pH and pOH in pure water?
A.

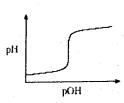

C.


110. Which of the following graphs describes the relationship between pH and pOH in an aqueous solution?

A.



В.


D.

C.

D.

111	. What is the [S	r(OH) ₂] in a	solution	with the p	H = 1	1.00?			
	A. 2.0×10^{-11}	· · · · · · · · · · · · · · · · · · ·	1.0 x 10	_		5.0 x 10	4 M	D.	1.0 x 10 ⁻³ M
112	. What is the pl-	I of a 0.10 M	(Sr(OH) ₂	solution?	,				*
	A. 0.70	В.	1.00		C.	13.00		D.	13.30
113	. What is the pC A. 0.00		ion prepa 0.30	red by add	ling 0	0.50 moles 14.00	of NaOH		.50 L of water? 13.70
114	. The pH of 0.10	M HNO3 is	;						
	A. 0.79	В.	1.00		C.	1.26		D.	13.00
115.	How many mo A. 0.030 mol		needed to 0.30 mo			of an HI s 3.0 mol	olution w		pH of 1.00? 30. mol
116.	Calculate the p A. 0.30		50 M HB1 1.30	r solution.		12.70		D.	13.70
117.	What is the pH A. 0.30		NaOH so 1.30	olution?	C.	12.70		D.	13.70
118.	What is the pH A. 2.00		M Sr(OH 2.30	() ₂ solutio		12.70		D.	12.00
	Which of the fo A. pOH = -log B. pOH = pK C. pOH = pK D. pOH = -log	g Kw w + pH w - pH	ations car	ı be used t	o cale	culate pOF	i ?		
	What is the pOI	H of 0.05 M : B.		?	C.	12.7		D.	13.0
21.	Complete the fo	llowing table	:						
	[H ₃ O ⁺]	[OH-]		pН		F	ОН		
	5 x 10 ⁻⁴ M								
				12.4					
		8.25 x 10	8 M						-
								10.:	369
į.		4							

122. Calculate the pH of a saturated solution of Mg(OH)₂.

123. Calculate the pH of 0.25 M Sr(OH)₂.

L12: Perform calculations relating pH, pOH, [H₃0⁺] and [OH-]

- 124. In order to change the pH of a solution from 2.0 to 4.0 the [H₃O ⁺] must
 - A. increase by a factor of 2
 - B. decrease by a factor of 2
 - C. increase by a factor of 100
 - D. decrease by a factor of 100
- 125. What is the $[H_3O^+]$ in a solution with a pOH = 5.20?
 - A. $1.4 \times 10^{-14} M$ B. $1.6 \times 10^{-9} M$
- C. $6.3 \times 10^{-6} M$
- D. 7.1 x 10⁻¹ M
- 126. What is the pOH of a solution made be adding 50.0 mL of 0.50 M NaOH to 250.0 mL of water?

 A. 0.30

 B. 1.00

 C. 1.08

 D. 12.92
- 127. Which of the following 1.0 x 10⁻³ M solutions has a pH of 3.00?
 - A. HCl
- B. HCN
- C. NaOH
- D. K_2SO_4

128. What is the pOH of 0.2 M HNO₃?

A. 5×10^{-14}

B. 0.2

C. 0.7

D. 13.3

129. A sample of pure NaOH (s) is dissolved in water to make 10.0 L of solution and a pH = 11.75 results. Calculate the mass of pure NaOH that was dissolved.

130. Which of the following solutions will have the lowest [OH-]?

A. NaF

B. NaCl

C. NaHCO3

D. NaH₂PO₄

M1: Write K₂ and K_h equilibrium

131. The relationship $[H_2P_2O_7^{-2}][H_3O^+]$ is the $[H_3P_2O_7^{-1}]$

A. K_a for $H_3P_2O_7$ B. K_b for $H_3P_2O_7$ C. K_a for $H_2P_2O_7$ D. K_b for $H_2P_2O_7$ 2

32. The relationship [H₃BO₃][OH⁻] is the expression for

 $[H_2BO_3]$

B. Kb for H3BO3 A. Ka for H3BO3

C. Ka for H2BO3-

D. K_b for H₂BO₃

33. The Ka expression for HTe is

A. $K_a = [H_2Te][OH^-]$

B. $K_a = [Te^{-2}][H_3O^+]$

[HTe -] [HTe -]

C. $K_a = [HTe^{-}][H_3O^{+}]$

D. $K_a = [HTe^-][OH^-]$

[H₂Te]

[Te -2]

134. The K_h expression for HSe is

A. $K_b = [H_2Se][OH^2]$

[HSe-]

C. $K_b = [HSe^-][H_3O^+]$ $[H_2Se]$

B. $K_h = [HSe^-][OH^-]$

[Se -2]

D. $K_b = [Se^{-2}][H_3O^+]$ [HSe-]

135. Consider the following acid equilibrium:

$$HCN_{(aq)} + H_2O_{(l)} = H_3O^{+}_{(aq)} + CN^{-}_{(aq)}$$

When writing the K_a expression for HCN, why is H₂O (1) not included in the expression?

A. The concentration of H₂O (1) is too large.

B. The concentration of H₂O (I) is too small.

C. The concentration of H₂O (1) does not exist.

D. The concentration of H₂O (I) is relatively constant.

136. Consider the following equilibrium:

$$CH_3NH_{2 (aq)} + H_2O_{(1)} = CH_3NH_3^+_{(aq)} + OH_{(aq)}$$

Which of the following is true?

A. $K_{eq} = [CH_3NH_3^+][OH_3^-]$

[CH₃NH₂][H₂O]

C. $K_h = [CH_3NH_3^+][OH_-]$ $[CH_3NH_2]$

B. $K_a = [CH_3NH_3^+][OH^-]$ $[CH_3NH_2]$

D. $K_{sp} = [CH_3NH_3^+][OH^-]$

137. Consider the following equilibrium:

$$CH_3NH_{2(aq)} + H_2O_{(1)} = CH_3NH_3^{+}_{(aq)} + OH_{(aq)}$$

Which of the following is true?

A. $K_b = [CH_3NH_3^+][OH_3^-]$ [CH₃NH₂][H₂O]

C. $K_b = [CH_3NH_3^+][OH_-]$ [CH₃NH₂]

B. $K_a = [CH_3NH_3^+][OH_3^-]$ [CH₃NH₂][H₂O]

D. $K_h = [CH_3NH_2][H_2O]$ [CH₃NH₃⁺][OH-]

138. What is the K₂ expression for H₃PO₄?

A. $K_a = [PO_4^{-3}]$

[H+]3

C. $K_a = [H_3O^+]^3[PO_4^{-3}]$

[H₃PO₄]

B. $K_a = [H_3O^+][PO_4^{-3}]$

[H₃PO₄]

D. $K_a = [H_3O^+][H_2PO_4^-]$ $[H_3PO_4]$

M2: Relate the magnitude of K2 or Kb to the strength of the acid or base

139. Which of the following 1.0 M solutions will have the lowest pH?

A. HCl

B. HCN

C. H₃PO₄

D. H₂C₂O₄

140. Which of the following 1.0 M solutions will have the highest pOH?

A. HCl

B. HCN

C. H₃PO₄

D. H₂C₂O₄

141. Which of the following 1.0 M solutions will have the lowest pH? B. HCN

A. HClO₄

C. H₃PO₄

D. H_2CO_3

142. Which of the following will be the most basic?

A. 1.0 M NO₃ -

B. 1.0 M SO₄ -2

C. 1.0 M CO₃ -2

D. 1.0 M PO_4^{-3}

143. Which of the following will be the most acidic?

A. 1.0 M NO₂ -

B. 1.0 M SO₃ -2

C. 1.0 M CO₃ -2

D. 1.0 M SO₄ -2

144. Which of the following Ka values represents the acid with the strongest conjugate base?

A. $K_a = 9.5 \times 10^{-9}$

B. $K_a = 4.2 \times 10^{-12}$ C. $K_a = 2.0 \times 10^{-5}$

D. $K_a = 7.8 \times 10^{-3}$

145. Which of the following will have the smallest Kb value?

A. IO₃ -

B. NH₃

D. HPO_4^{-2}

M3: Given the Ka, Kh and initial concentration, calculate any of the following: H₃0+, OH-, pH or pOH

147. Calculate the pH in 0.050 M Al₂(C₂O₄)₃.

146. Calculate the pH in 0.50 M NH₃.

148. Calculate the pH of 0.25 M HNO₂

150. Calculate the pH of 0.50 M H_2S .

151. Calculate the pH of 0.25 M Na₂HPO₄

149. Calculate the pH of 0.25 M NaHCO₃

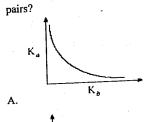
152. Calculate the pH of a saturated SrF₂ solution.

154. Calculate the pH of a 0.50 M NaC_6H_5O .

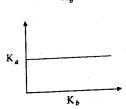
153. Calculate the pH of a 0.50 M KCN.

155. Calculate the pH of a 0.60 M NH₄I. Start by writing the equation for the predominant equilibrium reaction.

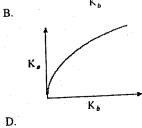
156. Calculate the pH of 3.0 M Na₂CO₃. Start by wrting the equation for the predominnat equilibrium reaction.

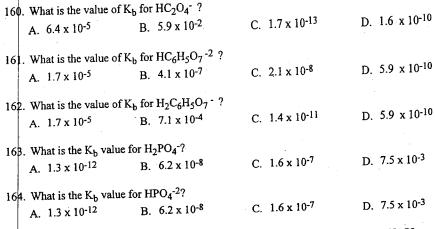

158. Calculate the pH of a $0.025~M~Ca(H_2PO_4)_2~$ solution.

157. What concentration of NH₃ would be required to provide a solution with a pH of 11.35?


M4: Calculate the value of K_b for a base given the value of K_a , or vice versa

159. Which of the following graphs describes the relationship between K_a and K_b for all conjugage


B.



Ç.

165. Since the ionization of water is endothermic, which of the following is true at 40°C?

A. $K_w = \underline{K}_{\underline{a}}$ K_b B. $K_w = \underline{K}_b$

K_a

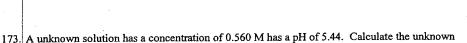
C. $K_w > 1.0 \times 10^{-14}$

D. $K_w < 1.0 \times 10^{-14}$

M5: Calculate the value of Kb or Ka, given the pH and initial concentration

166. A 0.0200 M solution of methylamine, CH_3NH_2 , has a pH = 11.40. Calculate the K_b for methylamine.

167. A 0.20 M solution of a weak acid HA has a pH = 1.32. Use calcaulations and the table of "Relative Strengths of Bronsted-Lowry Acids and Bases" from the Data Booklet to determine the identity of the acid.


168. A 0.20 M solution of a weak acid HA has a pH = 3.87. Use calcaulations and the table of "Relative Strengths of Bronsted-Lowry Acids and Bases" from the Data Booklet to determine the identity of the acid.

169. A 0.20 M solution of a weak base NaX has a pH = 8.744. Use calcaulations and the table of "Relative Strengths of Bronsted-Lowry Acids and Bases" from the Data Booklet to determine the identity of the NaX.

171. A 0.360 M diprotic acid has a pH of 4.50. Calculate its K_a value.

172. A 0.875 M solution of an unknown base has a pH of 8.16. Calculate the $K_{\rm b}$ of the weak base.

170. A 2.00 M diprotic acid has a pH of 0.50. Calculate its K_a value.

N1: Write a dissociation equation for a salt in water

174. Which of the following represents the dissociation equation of a salt in water?

A.
$$KCl_{(s)} \rightarrow K^{+}_{(aq)} + Cl_{(aq)}$$

solution's Ka or Kb.

B.
$$Ca^{+2}$$
 (aq) + SO_4^{-2} (aq) \rightarrow $CaSO_4$ (s)

C.
$$HCl_{(aq)} + KOH_{(aq)} \rightarrow KCl_{(aq)} + H_2O_{(l)}$$

D.
$$2Na^{+}_{(aq)} + 2H_{2}O_{(l)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$$

175. What is the dissociation equation for Na₂CO₃ in water?

A.
$$Na_2CO_{3(s)} \rightarrow Na^{+2}(aq) + CO_3^{-2}(aq)$$

B.
$$Na_2CO_{3(s)} \rightarrow 2Na^+_{(aq)} + CO_3^{-2}_{(aq)}$$

C.
$$CO_3^{-2}(aq) + H_2O(1) \rightarrow HCO_3^{-1}(aq) + OH^{-1}(aq)$$

D.
$$Na_2CO_3(s) + 2 H_2O(l) \rightarrow 2NaOH_{(aq)} + H_2CO_{3(aq)}$$

A.
$$NH_4Cl_{(s)} = NH_4^+_{(aq)} + Cl_{(aq)}$$

B.
$$NH_4^+_{(aq)} + Cl^-_{(aq)} \stackrel{\leftarrow}{\Rightarrow} NH_4Cl_{(s)}$$

C.
$$Cl_{(aq)} + H_2O_{(l)} \stackrel{\Leftarrow}{\longrightarrow} HCl_{(aq)} + OH_{(aq)}$$

D.
$$NH_4^+_{(aq)} + H_2O_{(l)} = H_3O^+_{(aq)} + NH_3_{(l)}$$

N2: Write a net ionic equations representing the hydrolysis of salts

A.
$$K^{+}_{(aq)} + H_{2}O_{(l)} = KOH_{(aq)} + H^{+}_{(aq)}$$

B.
$$KCN_{(aq)} + H_2O_{(l)} = K^+_{(aq)} + CN^-_{(aq)}$$

C.
$$CN^{-}_{(aq)} + H_2O_{(l)} \stackrel{l}{\rightleftharpoons} HCN_{(aq)} + OH^{-}_{(aq)}$$

D.
$$CN^{-}_{(aq)} + H_2O_{(l)} = 2H^{+}_{(aq)} + CNO^{-}_{(aq)}$$

178. Which of the following is the net ionic equation describing the hydrolysis of KHC₂O₄?

A.
$$KHC_2O_4_{(aq)} + H_2O_{(1)} = H_2C_2O_4_{(aq)} + KOH_{(aq)}$$

B.
$$KHC_2O_4$$
 (aq) + H_2O (l) \Rightarrow $KC_2O_4^-$ (aq) + H_3O^+ (aq)

C.
$$HC_2O_4^{-}(aq) + H_2O_{(1)} = H_2C_2O_4(aq) + OH^{-}(aq)$$

D.
$$HC_2O_4^-(aq) + H_2O \implies C_2O_4^{-2}(aq) + H_3O^+(aq)$$

179. Which of the following represents the equilibrium constant expression for the hydrolysis reaction that occurs in NaF(aq)?

A.
$$K_b = [HF][OH]$$

B.
$$K_a = [H_3O^+][F^-]$$

$$[F^*]$$

C. $K_{eq} = [Na^+][F^*]$

D.
$$K_w = [H_3O^+][OH^-]$$

180. Which of the following represents the equilibrium constant expression for the hydrolysis reaction that occurs in NH₄NO_{3(aq)}?

A.
$$K_b = [NH_3][OH^-]$$

B.
$$K_a = [H_3O^+][NH_3]$$

$$[NH_4^+]$$

C.
$$K_{eq} = [NH_4^{+}][NO_3^{-}]$$

D.
$$K_b = [HNO_3][OH^-]$$

A.
$$NaNO_{2(s)} \stackrel{\leftarrow}{\rightarrow} Na^{+}_{(aq)} + NO_{2^{-}(aq)}$$

B.
$$NO_{2^{-}(aq)} + H_{2}O_{(1)} = HNO_{2}(aq) + OH_{(aq)}$$

C. Na
$$^{+}_{(aq)}$$
 + 2H₂O (l) \leftrightarrows H₃O $^{+}_{(aq)}$ + NaOH $_{(aq)}$

D.
$$NaNO_{2(s)} + H_2O_{(l)} \Rightarrow NaOH + HNO_{2(aq)}$$

Which of the following describes the net ionic equation for the hydrolysis of a NaCH₃COO solution?

A.
$$NaCH_3COO_{(s)} = Na^+_{(aq)} + CH_3COO_{(aq)}$$

B.
$$CH_3COO^{-}_{(aq)} + H_2O_{(1)} = HCH_3COO_{(aq)} + OH^{-}_{(aq)}$$

C.
$$Na^{+}_{(aq)} + 2H_{2}O(l) = H_{3}O^{+}_{(aq)} + NaOH_{(aq)}$$

D.
$$NaCH_3COO_{(s)} + H_2O_{(l)} = NaOH + HCH_3COO_{(aq)}$$

183 What is the equilibrium expression for the predominant equilibrium in NaHCO_{3 (aq)}?

A.
$$K_a = [HCO_3^-]$$

 $[H_2O^+][CO_2^{-2}]$

B.
$$K_b = \underline{[HCO_3]}$$

$$[H_3O^+][CO_3^{-2}]$$

C. $K_a = [H_3O^+][CO_3^{-2}]$

$$[H_2CO_3][OH^-]$$

 $K_b = [H_2CO_3][OH^-]$

D.
$$K_b = [H_2CO_3][OH_1]$$
[HCO₃-]

184. Consider the following reaction:

$$NO_{2^{-}(aq)} + H_{2}O_{(l)} = HNO_{2(aq)} + OH_{(aq)}$$

This reaction represents which of the following?

- A. the titration of NO2
- B. the ionization of HNO₂
- C. the hydrolysis of NaNO2
- D. the dissociation of NaNO2

Which of the following is the net ionic equation that describes the hydrolysis that occurs in a K_2CO_3 solution?

A.
$$CO_3^{-2}$$
 (aq) + $2H_2O_{(1)} = H_2CO_3$ (aq) + H_3O+ (aq)

B.
$$K_2CO_{3(aq)} + 2H_2O_{(1)} = H_2CO_{3(aq)} + 2KOH_{(aq)}$$

C.
$$CO_3^{-2}(aq) + H_2O_{(1)} = HCO_3^{-1}(aq) + OH^{-1}(aq)$$

D.
$$K_2CO_{3 (aq)} + 2H_2O_{(1)} = H_2CO_{3 (aq)} + 2K^+_{(aq)} + 2OH^-_{(aq)}$$

186. Which of the following salt solutions is acidic?

- A. KBr
- B. FeCl₃
- C. Li₂C₂O₄
- D. NaHCO₃

187. For each of the following salts:

- write out all hydrolysis equilibria that the salts would participate in
- calculate the appropriate K_a or K_b for each hydrolysis
- predict whether the solution will be acidic, basic or neutral
- a. Fe(NO₃)₃
- b. NaNO₂

c. Ca(HC₂O₄)₂

d. NH_4IO_3

188.	For	each	of	the	fol	lowing	salts
------	-----	------	----	-----	-----	--------	-------

- write out all hydrolysis equilibria that the salts would participate in
- calculate the appropriate K_a or K_b for each hydrolysis
- predict whether the solution will be acidic, basic or neutral
- a. AlBr3

b. K₂SO₃

c. $Ca(H_2PO_4)_2$

d. NH₄CN

N3: Predict qualitatively whether a salt solution is acidic, basic or neutral

- 189. Which of the following solutions has a pH less than 7.00?
 - A. NaCl
- B. LiOH
- C. NH₄NO₃
- D. KCH3COO
- 190. Which of the following solutions has a pH less than 7.00?
 - A. NaCN
- B. LiNO₃
- C. NH₄Cl
- D. KF

- 191. In a solution of 0.10 M NaCN, the order of ion concentration, from highest to lowest is
 - A. $[Na^+] > [OH^-] > [CN^-] > [H_3O^+]$
 - B. $[Na^+] > [CN^-] > [OH^-] > [H_3O^+]$
 - C. $[H_3O^+] > [OH^-] > [CN^-] > [Na^+]$
 - D. $[OH^-] > [Na^+] > [CN^-] > [H_3O^+]$
- 192. Which of the following salts will dissolve to produce a basic solution?
 - A. KHSO₄
- B. NH₄CN
- C. $Al(NO_3)_3$
- D. NH₄CH₃COO

- 193. In an aqueous solution of NaCl, the pH is
 - A. less than 7 and the solution is acidic
 - B. equal to 7 and the solution is neutral
 - C. greater than 7 and the solution is basic
 - D. greater than 7 and the solution is acidic
- 194. In an aqueous solution of NaCN, the pH is
 - A. less than 7 and the solution is acidic
 - B. equal to 7 and the solution is neutral
 - C. greater than 7 and the solution is basic
 - D. greater than 7 and the solution is acidic
- 195. Dissolving NaCH3COO in water will produce a solution which is
 - A. basic with pH > 7
 - B. basic with pH < 7
 - C. acidic with pH > 7
 - D. acidic with pH < 7
- 196. Which of the following salt solutions will be neutral?
 - A. 1.0 M NH₄Cl
- B. 1.0 M HNO₂
- C. 1.0 M K₂CO₃
- D. 1.0 M LiClO₄

- 197. Which of the following salt solutions will be acidic?
 - A. KClO₄
- B. NH₄Br
- C. NaHPO₄
- D. CaC₂O₄

- 198. Which of the following salt solutions will be acidic?
 - A. KI
- B. FeBr₃
- C. Na₃C₆H₅O₇
- D. CaSO₄

- 199. Which of the following salt solutions will be acidic?
 - A. KBr
- B. CrBr3
- C. Na₃BO₃
- D. Ca(CH₃COO)₂

- 200. Which of the following solutions has the lowest pH?
 - A. 0.1 M NaCN
- B. 0.1 M Na₂CO₃
- C. 0.1 M Na₃PO₄
- D. 0.1 M NH₄NO₃

201. Consider the salt ammonium acetate, NH₄CH₃COO.

a. Write the dissociation equation of NH₄CH₃COO.

b. Write the hydrolysis equations which occur.

c. Explain why a solution of NH₄CH₃COO has a pH = 7.00. Support your answer with calculations

N4: Determine whether an amphiprotic ion will act as a base or an acid in solution

202. Water will act as an acid with which of the following?

I. H₂CO₃

II. HCO3

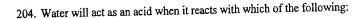
III. CO₃ -2

A. I only

B. III only

C. I and II only

D. II and III only


203. Which of the following represents the predominant reaction between HCO₃ and water?

A. $2HCO_3$ \rightarrow H_2O + CO_2

B. HCO_3 + H_2O \rightarrow H_2CO_3 + OH^-

C. $HCO_3^- + H_2O \rightarrow CO_3^{-2} + H_3O^+$

D. $2HCO_3^- + H_2O \rightarrow H_3O^+ CO_3^{-2} + OH^- + CO_2$

I. NO_2

 Π . NO_3

III. HC2O4 -

IV. HCO3

A. I and IV only

B. II and III only

C. I, II, and IV only

D. II, III and IV only

205. Which of the following will form a basic aqueous solution? C. HPO_4^{-2}

A. HSO₃

B. HSO4

D. HC₂O₄

206. Which of the following will form a basic aqueous solution?

A. HSO₃

B. HSO₄-

C. HCO3

D. HC₂O₄ -

207. Which of the following 1.0 M salt solutions will be acidic?

A. NaCl

B. NaHCO₃

C. $(NH_4)_2SO_3$

D. NaHC₂O₄

208. What is the equilibrium constant expression representing the predominant reaction for the hydrolysis of NaHC₂O_{4 (aq)}?

A. $K_w = [H_3O^+][OH^-]$

B. $K_{eq} = [Na^{+}][HC_{2}O_{4}^{-}]$ [NaHC₂O₄]

C. $K_a = [H_3O^+][C_2O_4^{-2}]$

D. $K_b = [H_2CO_3][OH^-]$

 $[HC_2O_4^-]$

 $[HC_2O_4^-]$

209. What is the equilibrium constant expression representing the predominant reaction for the hydrolysis of NaHSO_{3 (aq)}?

A. $K_w = [H_3O^+][OH^-]$

B. $K_{eq} = [Na^+][HSO_3^-]$

[NaHSO₃]

C. $K_a = [H_3O^+][SO_3^{-2}]$ [HSO₃-]

D. $K_b = [H_2SO_3][OH^-]$ [HSO₃-]

210. Which of the following salts will produce a solution with the highest pH?

D. 1.0 M NaH₂PO₄ A. 1.0 M Na₂HPO₄ B. 1.0 M NaHSO₄ C. 1.0 M NaHSO₃

211. Consider the following equilibrium:

$$HPO_4^{-2}(aq) + H_2O_{(1)} = ?$$

What is the equilibrium expression?

A.
$$K_a = [H_3O^+][PO_4^{-3}]$$

 $[HPO_4^{-2}]$

B. $K_a = [HPO_A^{-2}]$ [H₃O⁺] [PO₄ -3]

C.
$$K_b = [H_2PO_4 -][OH-]$$

 $[HPO_4 -^2]$

D. $K_b = [HPO_4^{-2}]$ [H₂PO₄ -] [OH-]

212. The HC_2O_4 (aq) ion will act as

- A. a base since $K_a < K_b$
 - B. a base since $K_a > K_b$
 - C. a acid since K_a < K_b
 - D. a acid since $K_a > K_b$

213. The H₂PO₄ (aq) ion will act as

- A. a base since K_a < K_b
- B. a base since $K_a > K_b$
- C. a acid since K_a < K_b
- D. a acid since $K_a > K_b$

214. What is the equilibrium expression for the predominant equilibrium in NaHCO3 (aq)?

A.
$$K_a = [HCO_3^-]$$

B. $K_b = [HCO_3-]$ [H₂CO₃] [OH-]

[H₃O⁺] [CO₃⁻²] C. $K_a = [H_3O^+][CO_3^{-2}]$

[HCO₃-]

D. $K_b = [H_2CO_3][OH^2]$ THCO₂-1

215. Which of the following amphiprotic ions will act predominantly as a base in solution? A. HSO₃-B. HSO₄-C. HPO₄-2 D. H₂PO₄-

O1: Describe an indicator as a mixture of a weak acid and its conjugate base, each with distinguishing colours

216. A chemical indicator in solution consists of

- A. a weak acid and its conjugate acid
- B. a weak acid and its conjugate base
- C. a strong acid and its conjugate acid
- D. a strong acid and its conjugate base

- 217. What do a chemical indicator and a buffer solution typically both contain?
 - A. a strong acid and its conjugate acid
 - B. a strong acid and its conjugate base
 - C. a weak acid and its conjugate acid
 - D. a weak acid and its conjugate base
- 218. Which term does the following statement best describe? A mixture of a weak acid and its conjugate base, each with distinguishing colours?
 - A. buffer
 - B. titration
 - C. indicator
 - D. primary standard

O2: Describe the term transition point of an indicator, including the conditions that exist in the equilibrium system

- 219. The pH at which an indicator changes color is known as its
 - A. standard point
- B. transition point
- C. equivilence point D. stoichiometric
- endpoint
- 220. What is true about the transition point of all indicators described by the following equilibrium:

A.
$$pH = K_a$$

$$T_a (HIn) = In-1$$

$$B. [HIn] = [In^-]$$

 $C. [H_3O^+] = [OH^-]$

D. pH = pOH

O3: Describe the shift in equilibrium and resulting colour changes as an acid or base is added to an indicator

221.	What color would	1.0 M HCl	be in an	indicator	mixture	consisting	of phenol	red and
	thymophthalein?				<u></u>		4	

A. red

B. blue

٠	(C.	у́је	llow

D. colorless

A. purple

B. blue

C. yellow

D. green

(A.) red

B. orange

C. yellow

D. colorless

22	4.	When the indicator thyn	nol blue is added to 0.10	M	solution	of an unkn	own a	acid, the solution is
		red. The acid could be A. HF	B. H ₂ S	C.	HCN		P .	HNO ₃
22	5.	When the indicator alaz	arin yellow is added to	0.01	0 M so	lution of an	unkno	own compound, the
		solution is red. The unk A. NaOH	B. KIO ₃	COL	HCN			HNO ₃
22	26,	At pH = 4.0 methyl red A red and [HInd] > [In	will be					
	1	B. red and [HInd] < [Ir	nd-l					•
		C. yellow and [HInd] >	· [Ind-]	1		•		
	1	D. yellow and [HInd]	< [Ind-]					
٦.	77	Methyl red is orange in	a 0.10 M solution of an	aci	i. The	acid could b	e	
Ζ.		(A.) HI	B. NaOH	C.	C_6H_5	OH	D.	NH ₃
	1 :	. Thymol blue is green in	0.70 M colution of or	, im	ะ โกกรพท	solution. T	he un	known solution
2	28.	Thymol blue is green in could be	a U. /2 Mi solution of at	1 (11)	KIIO WII	Solution 2		
		A. HI	B. NaOH	C.	HCN		D.	NaHCOO
			••		00			
2	29	Which would produce	a yellow solution at pH	= 4.1 C	0? indio	o carmen	D.	chlorophenol red
		A. methyl red	B. methyl violet	Ç.	morp.	·		
2	30	. Which would produce	an orange solution at pH	[=6	5.0?	-1 mod	n	chlorophenol red
		A. methyl red	B. thymol blue	C.	pheno	oi reu	. D.	Ontorophono
2	31	. Which would produce	a green solution at pH =	6.8	?		ъ	tudica comina
_		A. bromcresol green	B. thymol blue	C.	brom	thymol blue	ש.	indigo carmine
2	182	. The chemical indicator	bromthymol blue chang	ges i	from ye	llow to blue	as a	result of the addition
	72	of	B. 1.0 M HNO ₂	(a)	103	(K . CO.		1.0 M NH ₄ Cl
		A. 1.0 M HCl						
7	,,,,	. The chemical indicator	thymol blue changes fr	om	yellow	to blue as a	result	of the addition of
2	دور	A. 1.0 M HCl	B. 1.0 M HNO ₂	(c) 1.0 N	1 K ₂ CO ₃	D	. 1.0 M NH ₄ Cl
		. The chemical indicator	1 and a short	nec.	from hl	ne to vellov	vasa	result of the addition
2	234		bromeresoi green chan					
		A. 1.0 M HCl	B. 1.0 M NaNO ₂	C	. 1.0 N	√ K ₂ CO ₃	D	. 1.0 M LiCl
	<	4	1 1 1 -L C	m •	ed to ve	llow as a re	sult o	f the addition of
2	23.5	5. The chemical indicator A. 1.0 M HI	r phenol red changes fro B. 1.0 M NaNO ₂	C	. 1.0 N	MK ₂ CO ₃	D	. 1.0 M LiCl
				•				
	1							

236. Consider the following equilibrium for the chemical indicator phenol red, HInd, at a pH = 7.3 (orange).

$$HInd + H_2O \leftrightarrows H_3O^+ + Ind-$$
 yellow red

When some HCl is added, what stress is imposed on the equilibrium and what colour change occurs?

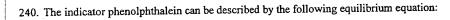
Stress	Indicator Colour Change
A. increased [H ₃ O ⁺]	turns red
B. decreased [H ₃ O ⁺]	turns red
C. increased [H ₃ O ⁺]	turns yellow
D. decreased [H ₃ O ⁺]	turns yellow

- 237. The indicator phenol red will be red in which of the following solutions? A. 1.0 M HF B. 1.0 M HBr C. $1.0 \text{ M NH}_4\text{Cl}$ D. $1.0 \text{ M Na}_2\text{CO}_3$
- 238. The indicator phenol red will be red in which of the following solutions?

 A. 1.0 M NaHSO₄

 B. 1.0 M H₂SO₃

 C. 1.0 M NH₄NO₃


 D. 1.0 M Na₂HPO₄
- 239. The indicator phenolphthalein can be described by the following equilibrium equation:

$$HIn + H_2O \leftrightarrows H_3O^+ + In-$$
 colorless pink

HCl is added to a slighly pink sample of this indicator. After equilibrium has been re-established, how do the $[H_3O^+]$ and the colour of the solution compare with the original equilibrium?

[H₃O⁺] Colour of solution

A. decreases
B. decreases
C. increases
C. increases
D. increases
Colour of solution
turns more pink
turns more pink
turns colourless
turns colourless

$$HIn$$
 + $H_2O \leftrightarrows H_3O^+$ + In -
colorless pink

NH₄Cl is added to a slighly pink sample of this indicator. After equilibrium has been re-established, how do the [H₃O⁺] and the colour of the solution compare with the original equilibrium?

Colour of solution [H₃O⁺]turns more pink A. decreases turns colourless B. decreases turns more pink C. increases turns colourless D. increases

241. Consider the following indicator equilibrium:

$$HIn + H_2O = H_3O^+ + In$$

yellow) (blue)

What is the result of adding CH3COOH to this indicator?

E	quilibrium Shift	Colour
A.	left	blue
В.	left	yellow
C.	right	blue
D.	right	yellow

242. Consider the following indicator equilibrium:

$$HIn + H_2O \implies H_3O^+ + In$$
 (yellow) (blue).

What is the result of adding Na₂CO₃ to this indicator?

E	quilibrium Shift	Colour
A.	left	blue
B.	left	yellow
C.	right	blue
D.	right	yellow

243. Consider the equilibirum for the indicator, thymolphthalein (HThy):

$$HThy + H_2O = H_3O^+ + Thy$$

What happens when NaOH is added to a sample of this indicator in water?

Equilibrium

Colour

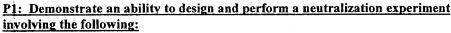
A. shifts left

turns blue turns blue

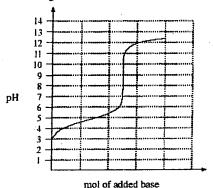
B. shifts right C. shifts left

turns colourless

D. shifts right


turns colourless

O4: Predict the approximate pH at the transition point using the Ka value of an indicator


- 244. A chemical indicator has a $K_a = 1.0 \times 10^{-6}$. Determine the identity of this indicator.
 - A. phenol red
 - B. bromthymol blue
 - C. methyl red
 - D. chlorophenol red
- 245. Which of the following chemical indicators has a $K_a = 2.5 \times 10^{-5}$?
 - A. methyl orange
- B. phenolphthalein C. thymolphthalein
- D. bromcresol green
- 246. Which of the following chemical indicators has a $K_a = 7.9 \times 10^{-10}$?
 - A. methyl orange
- B. phenolphthalein
 - C. thymolphthalein
- D. bromcresol green
- 247. Which of the following chemical indicators has a $K_a = 1.6 \times 10^{-4}$?
 - A. methyl orange
- B. phenolphthalein C. thymolphthalein
- D. bromcresol green
- 248. A chemical indicator has a $K_a = 4.0 \times 10^{-6}$. What is the pH at the transition point and what is the identity of the indicator?
 - Indicator pН
 - 5.4 methyl red A.
 - bromcresol green B. 5.4
 - phenophthalien C. 8.6
 - thymol blue 8.6 D.
- 249. A chemical indicator has a $K_a = 1.6 \times 10^{-7}$. What is the pH at the transition point and what is the identity of the indicator?
 - Indicator pΗ
 - 6.8 chlorophenol red A.
 - bromthymol blue B. 6.8
 - 6.8 phenol red C.
 - thymol blue D. 7.2

1.1×10^{-10}	1 1 wing gold base titrations
250. An indicator changes colour when 4.0 M HCl is added. If the indicator has a $K_a = 1 \times 10^{-10}$,	254. An indicator is often used during acid-base titrations.a. Define the term <u>transition point</u> for an indicator.
identify the indicator and the pH at its transition point.	a. Define the term <u>transition point</u> for an income
Indicator pH	
A. phenolphthalein 4.0	
B. phenolphthalein 10.0	b. Calculate the Ka value for methyl red.
C. thymolphthalein 4.0 D. thymolphthalein 10.0	0, 02.0
D. inymorphidatem 10.0	
251. Which indicator below has a K _a = 1.0 x 10 ⁻⁶ ?	
A. methyl red B. phenophthalein C. bromthymol blue D. chlorophenol re	20
	I and the second se
O5: Predict the approximate K_a value of an indicator given the approximate pl	c. A mixture of indicators is made by combining equal amounts of methyl orange and
range of the colour change	bromthymol blue. Complete the following table showing the outside the
	and the mixture at the pH's indicated.
252. An indicator is blue at pH of 7.8 and yellow at a pH of 5.6. Identify the indicator and determ	nine pH Colour of Colour of Colour of
252. An indicator is blue at pH of 7.8 and yellow at a pH of 5.6. Identity	pH Colour of Col
its K _a Indicator K _a	pH = 5
A. Hymor size	pH = 9
B. thymol blue 2 x 10 ⁻⁹ C. bromthymol blue 2 x 10 ⁻⁷	
D. bromcresol green 3 x 10 ⁻⁵	
D. General State of the Control of t	
253. What is one of the Ka values for thymol blue? D. 6×10^{-7} D. 6×10^{-2}	
A. 2×10^{-9} B. 2×10^{-7} C. 1×10^{-7} D. 6×10^{-2}	
	255. An indicator is often used during acid-base titrations.
	a. Calculate the K _a value for phenol red.
	b. A mixture of indicators is made by combining equal amounts of methyl orange, phenol red
	b. A mixture of indicators is made by combining equal amounts of metry, or and chlorophenol red. Complete the following table showing the colour of each indicator
	and chlorophenor real. Complete are and the mixture at the pH's indicated.
	nH Colour of Colour of
	thymol blue phenorica
	pH = 1.4
	pH = 7.8
	pri - 7.0

pH = 10.0

- primary standard
- standardized solutions
- titration curves
- indicators selected so the end point coincides with the equivalence point
- 256. Pure sodium hydrogen phthalate is used to standardize a solution of NaOH for use in an acid-base titration. What term is used to describe the sodium hydrogen phthalate?
 - A. endpoint acid
 - B. titrant acid
 - C. equivilence acid
 - D. primary standard
- 257. Consider the following titration curve:

- a. What type of titration would generate this type of graph?
- b. Explain why the equivalence point pH is not 7.00
- c. Besides phenolphthalein, which indicator would be a good choice for this titration?

- 258. In acid-base titrations, the solution of known concentration is called a (an)
 - A. basic solution
 - B. acidic solution
 - C. standard solution
 - D. indicating solution
- 259. At a certain point in a strong acid-strong base titration, the moles of H+ are equal to the moles of OH. This is a definition of which of the following?
 - A. end point
- B. titration point
- C. transition point
- D. equivalence point
- 260. When performing a titration experiment, the indicator must always have
 - A. a distinct colour change a pH = 7.0
 - B. the ability to change from colourless to pink
 - C. a transition point that is close to the equivilence point
 - D. an equivalence point that is close to the stoichiometric point
- 261. Which of the following is not a good use for an acid/base titration curve?
 - A. to determine the concentration of the base
 - B. to select a suitable indicator for the titration
 - C. to determine whether the acid is weak or strong
 - D. to selects a suitable primary standard for the titration
- 262. A weak acid is titrated with a strong base using the indicator phenophthalein to detect the end point. What is the approximate pH at the transition point?
 - A. 7.0
- B. 8.0
- C. 9.0
- D. 10.0
- 263. What term describes the chemical that is used to detect the equivilence point of an acid-base titration?
 - A. buffer
- B. standard
- C. indicator
- D. primary standard
- 264. Which of the following is a piece of equipment typically used in acid-base titrations?
 - A. burette
- B. test tube
- C. litmus paper
- D. graduated cylinder

P2: Calculate from titration data the concentration of an acid or base

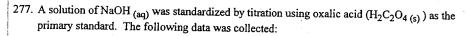
265. The following data were recorded when titrating 25.00 mL of CH₃COOH with 0.200 M Ba(OH)2.

Volume of Ba(OH)2 added

	Trial #1	Trial #2	Trial #3
Initial reading	4.03 mL	17.51 mL	32.03 m
Final reading	17.51 mL	32.03 mL	45.55 m

Calculate the [CH3COOH]

- A. 0.216 M
- B. 0.108 M
- C. 0.370 M
- D. 0.185 M


26	During a titration, what 10.0 mL of 2.00 M CI			ΗW	ould be necessary to	con	npietery neutralize
	A. 10.0 mL	B. 20.		C.	25.0 mL	D.	40.0 mL
26	7. During a titration, wha			OH)	2 would be necessar	y to	completely
-	A. 10.0 mL	B. 20.	-	C.	25.0 mL	D.	40.0 mL
26	8. The complete neutraliz	zation of	15.0 mL of KOH	I гес	uires 0.0250 moles	of H	₂ SO ₄ . The [KOH]
	A. 3.75 x 10 ⁻⁴ M	B. 1.6	7 M	C.	3.33 M	D.	0.833 M
26	9. How many moles of K A. 0.0140 moles		necessary to comp 26 moles		ely neutralize 42.0 m 0.252 moles		f 3.00 M HCl? 3.00 moles
27	O. How many moles of B. A. 0.0125 moles				ompletely with 100. 0.0500 moles		L of 0.250 M HNO ₃ 1.25 moles
27	NaOH. Calculate the c	concentra	tion of the acid.				
	A. 0.093 M	B. 0.19			0.37 M	-	0.74 M
27	 During a titration, 25.0 NaOH. Calculate the c 			plet	ely neutralized by 4	2.6 r	nL of 0.20 M
	A: 0.11 M	В. 0.17		C.	0.34 M	D.	1.0 M
27	3. A 20.0 mL sample of H concentration of the ac		ated with 25.0 m	L o	f 0.20 M Sr(OH) ₂ . \	<i>V</i> ha	t is the
	A. 0.13 M	B. 0.20) M	C.	0.25 M	D.	0.50 M
274	A 25.0 mL sample of H concentration of the H ₂		titrated with 20.0) mI	of 0.150 M NaOH.	Ca	lculate the
	A. 0.00300 M	В. 0.12	20 M	C.	0.0600 M	D.	0.240 M
275	. A 25.0 mL sample of a the concentration of the		weak acid is titra	ated	with 20.2 mL of 0.1	0 M	NaOH. What is
	A. 0.040 M	В. 0.08	0 M	C.	0.16 M	D.	0.12 M

276. A titration was performed by adding $0.115\,\mathrm{M}$ HCl to a 25.00 mL sample of $\mathrm{Ba(OH)_2}$. Calculate the $\mathrm{[Ba(OH)_2]}$ from the following data:

	Trial #1	Trial #2	Trial #3
Inital volume of HCl (mL)	4.00	22.45	3.45
Final volume of HCl (mL)	22.45	42.85	22.00

Mass of $H_2C_2O_{4 (s)}$ used = 1.02 g Volume of NaOH (aq) used = 40.0 mL

Calculate the concentration of the NaOH (aq)

P3: Calculate the volume of an acid or base of known molarity needed to neutralize a known volume of a known molarity base or acid

278	. Calculate the volume of 0.500 M NaOH required to completely neutralize 25.0 mL of 0.450 M ${ m H}_2{ m SO}_4$.
-----	---

A. 9.00 mL

B. 11.3 mL

C. 22.5 mL

D. 45.0 mL

279. Calculate the volume of 0.300 M HNO₃ needed to completely neutralize 25.0 mL of 0.250 M Sr(OH)₂.

A. 10.4 mL

B. 15.0 mL

C. 20.8 mL

D. 41.7 mL

280. What volume of 0.100 M H₂SO₄ is needed to titrate 25.0 mL of 0.200 M NaOH?

A. 12.5 mL

B. 25.0 mL

C. 50.0 mL

D. 100.0 mL

281. What volume of 0.500 M NaOH is required to neutralize 25.0 mL of a 0.250 M HBr?

A. 5.00 mL

B. 12.5 mL

C. 20.0 mL

D. 25.0 mL

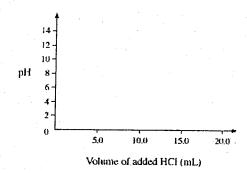
282. What volume of 0.250M KOH is required to titrate 2.30×10^{-3} mol of the weak acid $H_2C_2O_4$?

A. 1.15 mL

B. 4.60 mL

C. 9.20 mL

D. 18.4 mL


283. A 250.0 mL sample of HCl with a pH of 2.000 is completely neutralized with 0.200 M NaOH.

a. What volume of NaOH is required to reach the stoichiometric point?

b. Write the net ionic equation for the neutralization.

c. If the HCl were titrated with 0.200 M NH_{3 (aq)} instead of 0.200 M NaOH, how would the volume of base required to reach the equivilence point compare with the volume calculated in part a)? Explain your answer.

284. a. In the space below, sketch the titration curve for the reaction when 0.10 M HCl is added to 10.0 mL of 0.10 M NaOH.

Describe two changes in the titration curve that would occur from using 0.10 M CH₃COOH in place of the HCl

c. Draw the new titration curve with dotted line.

P4: Write formula, complete ionic, and net ionic neutralization equations for weak and strong acids by weak and strong bases

285 Which of the following would be the net ionic equation for the reaction between HCl and KOH?

A.
$$H^+ + OH^- \Rightarrow H_2O$$

B.
$$HCI + KOH = H_2O + KCI$$

C.
$$H^{+} + Cl^{-} + K^{+} + OH^{-} \implies H_{2}O + KCl$$

D.
$$H^+ + Cl^- + K^+ + OH^- \implies H_2O + Cl^- + K^+$$

286. Which of the following is the net ionic equation for the neutralization of CH_3COOH with NaOH? $_{(an)}$

A.
$$CH_3COO^-_{(aq)} + OH^-_{(aq)} \rightarrow CH_3COOH_{(aq)} + O^{-2}_{(aq)}$$

B.
$$CH_3COOH_{(aq)} + OH_{(aq)} \rightarrow CH_3COO_{(aq)} + H_2O_{(l)}$$

C.
$$CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow NaCH_3COO_{(aq)} + H_2O_{(1)}$$

D.
$$CH_3COOH_{-(aq)} + H^{+(aq)} + Na^{+(aq)} + OH_{-(aq)} \rightarrow Na^{+} + CH_3COO_{-(aq)} + H_2O_{-(1)}$$

287. Write the net ionic equation for the neutralization of HF (aq) with Sr(OH)2 (aq)

A.
$$HF_{(aq)} + OH_{(aq)} \rightarrow H_2O_{(l)} + F_{(aq)}$$

B.
$$HF_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + F^-_{(aq)}$$

C.
$$2HF_{(aq)} + Sr(OH)_{2(aq)} \rightarrow SrF_{2(s)} + 2H_2O_{(l)}$$

D.
$$2HF_{(aq)} + Sr^{+2}_{(aq)} + 2OH_{(aq)} \rightarrow SrF_{2(s)} + 2H_2O_{(1)}$$

288. Write the net ionic equation for the neutralization of HCH3COO (aq) with Sr(OH)2 (aq).

A.
$$HCH_3COO_{(aq)} + OH_{(aq)} \rightarrow H_2O_{(l)} + CH_3COO_{(aq)}$$

B.
$$HCH_3COO_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + CH_3COO^-_{(aq)}$$

C.
$$2HCH_3COO_{(aq)} + Sr(OH)_{2(aq)} \rightarrow Sr(CH_3COO)_{2(aq)} + 2H_2O_{(l)}$$

D.
$$2H^{+}_{(aq)} + 2CH_{3}COO^{-}_{(aq)} + Sr^{+2}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Sr(CH_{3}COO)_{2(aq)} + 2H_{2}O_{(1)}$$

289. Write the net ionic equation for the neutralization of HBr (aq) with Sr(OH)2 (aq)

A.
$$HBr_{(aq)} + OH_{(aq)} \rightarrow H_2O_{(l)} + Br_{(aq)}$$

B.
$$H^+_{(aq)} + OH_{(aq)} \rightarrow H_2O_{(1)}$$

C.
$$2HBr_{(aq)} + Sr(OH)_{2(aq)} \rightarrow SrBr_{2(aq)} + 2H_2O_{(1)}$$

D.
$$2H_{(aq)}^{+} + 2Br_{(aq)}^{-} + Sr_{(aq)}^{+} + 2OH_{(aq)}^{-} \rightarrow Sr_{(aq)}^{+} + 2H_{2}O_{(1)}^{-}$$

290. What is the net ionic equation for the neutralization of 0.1 M $Sr(OH)_2$ (aq) with 0.1 M H_2SO_4

$$(aq)^{?}$$
A. $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(l)}$

B.
$$Sr^{+2}_{(aq)} + SO_4^{-2}_{(aq)} \rightarrow SrSO_4_{(s)}$$

C.
$$Sr^{+2}(aq) + 2OH^{+}(aq) + 2H^{+}(aq) + SO_{4}^{-2}(aq) \rightarrow SrSO_{4}(s) + 2H_{2}O(l)$$

D.
$$Sr(OH)_{2 (aq)} + H_2SO_{4 (aq)} \rightarrow SrSO_{4 (s)} + 2H_2O_{(l)}$$

291. What is the formula equation for the neutralization of 0.1 M $Sr(OH)_2$ (aq) with 0.1 M H_2SO_4 (aq)?

A.
$$H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}$$

B.
$$Sr^{+2}_{(aq)} + SO_4^{-2}_{(aq)} \rightarrow SrSO_{4(s)}$$

C.
$$Sr^{+2}$$
 (aq) + $2OH^{-}$ (aq) + $2H^{+}$ (aq) + SO_4^{-2} (aq) \rightarrow $SrSO_4$ (s) + $2H_2O$ (l)

D.
$$Sr(OH)_{2 \text{ (aq)}} + H_2SO_{4 \text{ (aq)}} \rightarrow SrSO_{4 \text{ (s)}} + 2H_2O_{(1)}$$

- 292. Which net ionic equation best describes the reaction between NaOH and H₂S?
 - A. $OH^{-}_{(aq)} + H^{+}_{(aq)} = H_{2}O_{(1)}$
 - B. $2OH_{(aq)} + H_2S_{(aq)} = 2H_2O_{(l)} + S^{-2}_{(aq)}$
 - C. $2NaOH_{(aq)} + H_2S_{(aq)} = 2H_2O(l) + Na_2S_{(aq)}$
 - D. $2Na^{+}_{(aq)} + 2OH^{-}_{(aq)} + 2H^{+}_{(aq)} + S^{-2}_{(aq)} = 2H_{2}O_{(1)} + 2Na^{+}_{(aq)} + S^{-2}_{(aq)}$
- 293. The strong acid, HNO_{3 (aq)} is titrated with the weak base, NH_{3 (aq)}. What is the net ionic equation for this reaction?
 - A. $H^{+}_{(aq)} + OH^{-} = H_{2}O_{(1)}$
 - B. $H^+_{(aq)} + NH_{3(aq)} \stackrel{\leftarrow}{\longrightarrow} NH_4^+_{(aq)}$
 - C. $HNO_{3 (aq)} + NH_{3 (aq)} = NH_4NO_{3 (aq)}$
 - D. $H^{+}_{(aq)} + NO_{3}_{(aq)} + NH_{3}_{(aq)} = NH_{4}_{(aq)} + NO_{3}_{(aq)}$
- Which of the following is the complete ionic equation for the titration of HCl (aq) with KOH (aq)?
 - A. $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(1)}$
 - B. $HCl_{(aq)} + KOH_{(aq)} \rightarrow KCl_{(aq)} + H_2O_{(l)}$
 - |C. $H^{+}_{(aq)} + Cl^{-}_{(aq)} + K^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow KCl_{(aq)} + H_{2}O_{(1)}$
 - D. $H^{+}_{(aq)} + Cl^{-}_{(aq)} + K^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow K^{+}_{(aq)} + Cl^{-}_{(aq)} + H_{2}O_{(1)}$
- 295. What is the net ionic equation for the titration of H₃PO_{4 (aq)} with Sr(OH)_{2 (aq)}?
 - $|A. H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O_{(l)}$
 - B. $6H^{+}_{(aq)} + 6OH^{-}_{(aq)} \rightarrow 6H_{2}O_{(1)}$
 - C. $2H_3PO_4_{(aq)} + 3Sr^{+2}_{(aq)} + 6OH_{(aq)} \rightarrow Sr_3(PO_4)_{2(s)} + 6H_2O_{(1)}$
 - D. $6H^{+}_{(aq)} + 2PO_{4}^{-3}_{(aq)} + 3Sr^{+2}_{(aq)} + 6OH^{-}_{(aq)} \rightarrow 3Sr^{+2}_{(aq)} 2PO_{4}^{-3}_{(aq)} + 6H_{2}O_{(1)}$
- Write the net ionic equation for the acid-base reaction that occurs between NaOH (aq) and NH₄Cl (aq).

P5: Calculate the pH of a solution formed when a strong acid is mixed with a strong base

- 297. What is the pH of the solution formed when 0.060 moles of NaOH is added to 1.00 L of 0.050 M HCl?
 - A. 2.00
- В. 7.00
- C. 12.00
- D. 12.78

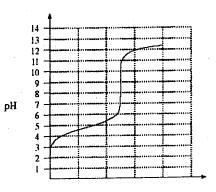
- 298. What is the pH of the solution formed when 500.0 mL of 0.070 M NaOH is added to 500.0 mL L of 0.050 M HCl?
 - A. 2.00
- B. 0.020
- C. 12.00
- D. 12.78
- 299. A 10.0 mL sample of 0.093 M H₂SO₄ added to 18.6 mL of 0.10 M NaOH. Calculate the pH of the solution that is made.
 - A. 0.0
- B. 7.00
- C. 3.03
- D. 10.97
- 300. The [H₃O⁺] results when 25.0 mL of 1.0 M HCl is mixed with 15.0 mL of 0.30 M KOH?
 - A. 0.020 M
- B. 0.51 M
- C. 0.70 M
- D. 0.82 M
- 301. Calculate the pH of a solution prepared by mixing 15.0 mL of 0.50 M HCl with 35.0 mL of 0.10 M Ba(OH)₂.

P6: Contrast the equivilence point (or stoichiometric point) of a strong acid-strong base titration with the equivilence point of a titration involving a weak acid-strong base or weak base-strong acid

- 302. Which statement describes the pH of the equivilence point of a titration of 0.200 M CH₃COOH by 0.200 M KOH?
 - A. The pH = 7 because the CH_3COOH and KOH neutralize each other.
 - B. The pH = 7 because the no hydrolysis of products is possible.
 - C. The pH > 7 because the KCH₃COO hydrolizes to form OH $^{-}$.
 - D. The pH < 7 because the KCH3COO hydrolizes to form $\rm H_3O^+$.
- 303. Which statement describes the pH of the equivilence point of a titration of 0.200 M NH₃ by 0.200 M HI?
 - A. The pH = 7 because the NH_3 and HI neutralize each other.
 - B. The pH = 7 because the no hydrolysis of products is possible.
 - C. The pH > 7 because the NH_4^+ hydrolizes to form OH-.
 - D. The pH < 7 because the NH_4^+ hydrolizes to form H_3O^+ .

204	304. What is the [H ₃ O ⁺] at the equivilence point for the titration between HB	r and KOH?	
3041	A. 1.0 x 10 ⁻⁹ M B. 1.0 x 10 ⁻⁷ M C. 1.0 x 10 ⁻⁵ M	D. 0.0 M	
	the first the titration between HF and	кона	
305	What is the pH at the equivilence point for the titration between HF and	D. 0.0	
	A. 6.25 B. 7.00 C. 7.75	D . 5	
306	306. What is the pH at the equivilence point for the titration between HBr and	INH ₃ ?	
500.	A. 6.25 B. 7.00 C. 7.75	D. 0.0	
	Pt. Ciab		
307	307 At the equivilence point, the titration of HCl with NH3 will form a soluti	ion which is	
	A. basic with pH >7		
	B. acidic with pH < 7		
	C. acidic with pH > 7		•
	D. neutral with $pH = 7$		
308	308 At the equivilence point, the titration of HCN with NaOH will form a so	lution which	ı is
500.	A. basic with pH >7		
	B. acidic with pH < 7		
	C. basic with pH < 7		
	D. neutral with $pH = 7$		
200	309 At the equivilence point, the titration of HCl with NaOH will form a sol	ution which	is
309	A. basic with pH >7		
	B. acidic with pH < 7		
	C. basic with pH < 7		
	D. neutral with $pH = 7$		
210	310 Which of the following titrations would have a pH >7 at the equivilence	point?	
310	A. HI with KOH		
	B. HClO ₄ with NH ₃		
	C. HCl with Sr(OH) ₂		
	D. HCOOH with NaOH		
	III II < 7 at the equivilence	e noint?	
311	Which of the following titrations would have a pH < 7 at the equivilence	c pome.	
	A. HI with KOH		
	B. HClO ₄ with NH ₃		
	C. HCl with Sr(OH) ₂		
	D. HCOOH with NaOH		
312	312. The pH at the stoichiometric point for the complete neutralization of a s	trong acid b	y a weak
	base will be		
	A. equal to 7.0		
	B. equal to 0.00		
	C. less than 7.0		
	D. greater than 7.0		
		•	

A. equal to 7.0 B. equal to 0.00			of a weak acid by a strong
C. less than 7.0			
D. greater than 7.0)		
314. When a weak acid point?	is titrated with a strong	base, what could the pH	value be at the equivilence
A. 0.0	B. 5.8	C. 7.0	D. 8.6
315. When a strong acid	l is titrated with a weak		value be at the equivilence
A. 0.0	B. 5.8	C. 7.0	D. 8.6
B. A weak acid isC. A strong acid is	titrated with a weak ba titrated with a strong be s titrated with a weak be s titrated with a strong b	ase. ase.	
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is	titrated with a weak ba titrated with a strong be s titrated with a weak be s titrated with a strong b	ase. ase. pase.	veak acid is titrated with a
A. A weak acid isB. A weak acid isC. A strong acid isD. A strong acid is	titrated with a weak ba titrated with a strong be s titrated with a weak be s titrated with a strong b	ase. ase. pase.	
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is 317. What is always true strong base? A. pH < 6.8 318. What is always true	titrated with a weak ba titrated with a strong be stitrated with a weak be stitrated with a strong be e about the pH at the eq B. pH > 7.0	ase. pase. quivilence point when a v C. pH = 7.0	veak acid is titrated with a
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is 317. What is always true strong base? A. pH < 6.8 318. What is always true strong acid?	titrated with a weak ba titrated with a strong be stitrated with a weak be stitrated with a strong be e about the pH at the eq B. pH > 7.0	ase. pase. quivilence point when a v C. pH = 7.0	veak acid is titrated with a D. pH = 8.8
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is 317. What is always true strong base? A. pH < 6.8 318. What is always true strong acid? A. pH < 7.0	titrated with a weak ba titrated with a strong be stitrated with a weak be stitrated with a strong be e about the pH at the eq B. pH > 7.0	ase. pase. quivilence point when a v C. pH = 7.0	veak acid is titrated with a D. pH = 8.8
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is 317. What is always true strong base? A. pH < 6.8 318. What is always true strong acid? A. pH < 7.0 B. pH > 7.0 C. pH = 7.0	titrated with a weak ba titrated with a strong be stitrated with a weak be stitrated with a strong be e about the pH at the eq B. pH > 7.0 e about the pH at the eq	ase. pase. pase. pase. pase. C. pH = 7.0 puivilence point when a way.	veak acid is titrated with a D. pH = 8.8 veak base is titrated with a
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is 317. What is always true strong base? A. pH < 6.8 318. What is always true strong acid? A. pH < 7.0 B. pH > 7.0 C. pH = 7.0	titrated with a weak ba titrated with a strong be stitrated with a weak be stitrated with a strong be e about the pH at the eq B. pH > 7.0 e about the pH at the eq	ase. pase. quivilence point when a v C. pH = 7.0	veak acid is titrated with a D. pH = 8.8 veak base is titrated with a
A. A weak acid is B. A weak acid is C. A strong acid is D. A strong acid is 317. What is always true strong base? A. pH < 6.8 318. What is always true strong acid? A. pH < 7.0 B. pH > 7.0 C. pH = 7.0	titrated with a weak ba titrated with a strong be stitrated with a weak be stitrated with a strong be e about the pH at the eq B. pH > 7.0 e about the pH at the eq	ase. pase. pase. pase. pase. C. pH = 7.0 puivilence point when a way.	veak acid is titrated with a D. pH = 8.8 veak base is titrated with a



319. A 10.0 mL sample of a 0.10 M strong acid HA is titrated with a 0.25 M KOH.

A 10.0 mL sample of a 0.10 M weak acid HB is titrated with the same 0.25 M KOH.

For one of these titrations a graph is generated that looks like:

a. Which titration generated the above graph? Explain your answer.

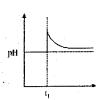
The titration between _____ and KOH.

Explanation:

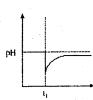
- b. Would the titration involving HA require a larger volume of 0.25 M KOH than the titration involving HB? Explain your answer. (Assume both acids are monoprotic)
- b. Select one indicator which could be used for both titrations.

320. The following two experiments were conducted:

Titration A: A strong acid was titrated with a 0.20 M strong base.


Titration B: A weak acid was titrated with a 0.20 M strong base.

- a. How does the pH at the equilivence point of Titration B compare with the pH at the equivilence point of Titration A?
- b. Explain your answer
- c. How will the volume of strong base needed to reach equivilence point in Titration B compare with the volume of strong base needed to reach equivilence point in Titration A?

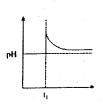

Q1: Describe the tendency of buffer solutions to resist changes in pH

321. Which of the following graphs best describes the effect on the pH of a buffer solution with a small amount of acid is added at time t₁?

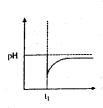
A.

B.

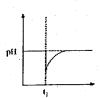
C.

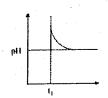


D.



322. Which of the following graphs best describes the effect on the pH of a buffer solution with a small amount of base is added at time t1?


A.


B.

C.

D.

- 323. What typically happens to the pH of a buffer solution when a small amount of acid is added?
 - A. The pH increases slightly.
 - B. The pH decreases slightly.
 - C. The pH always remains the same.
 - D. The pH first increases then decreases to its original value.

- 324. What happens to the pH of a buffer solution if a small amount of base is added?
 - A. The pH remains constant
 - B. The pH increases slightly
 - C. The pH decreases slightly
 - D. The pH decreases significantly
- 325, a. What is the main function of a buffer solution?
 - b. Describe how you would prepare a buffer solution.

O2: Describe the composition of an acidic buffer and a basic buffer

- 326. Which of the following would form a buffer solution when equal moles are mixed together?
 - A. HCl and NaCl
 - B. HCN and NaCN
 - C. KNO3 and KOH-
 - D. Na₂SO₄ and NaOH
- 327. Equal moles of which of the following chemicals could be used to make a buffer solution that has a pH >7.0?
 - A. HF and NaF
- B. HCl and NaCl
- C. KBr and NaNO₃
- D. HCN and NaCN
- 328. Equal moles of which of the following chemicals could be used to make a β buffer solution with β pH <7.0?
 - A. HF and NaF
 - B. HCl and NaCl
- C. KBr and NaNO₃
- D. HCN and NaCN
- 329. Which of the following pairs of chemicals could be used to make a buffer solution?
 - A. NH₃ and H₂O
- B. HCl and NaCl
- C. NH₃ and NH₄Cl
- D. CH₃COOH and HCI
- 330. Which of the following pairs of chemicals could be used to make a buffer solution?
 - A. NH₃ and HCl
- B. HCN and NaCN C. NH₃ and NaOH
- D. HCOOH and HCl

331. Which of the following could tpically be used to prepare a buffer solution?

- A. H₂S and NaHS
- B. H₂S and ZnS
- C. HNO₃ and NaNO₃
- D. HNO2 and NaNO3

O3: Outline a procedure to prepare a buffer solution

- 332. A buffer solution can be prepared by dissolving equal moles of
 - A. a weak base and a strong acid
 - B. a weak acid and its conjugate base
 - C. a strong acid and its conjugate base
 - D. a strong base and its conjugate acid
- 333. Which of the following acids could not be present in a buffer solution?
 - A. HF
- B. HNO₂
- C. H₂SO₃
- D. HClO₄
- 334. Which of the following acids could <u>not</u> be present in a buffer solution?
 - A. HF
- B. HCN
- $D. H_2S$

04: Identify the limitations in buffering systems

- 335. If 1.00 moles of HCN and 1.00 moles of NaCN are added to 1.00 L of water, what pH will the buffer remain relatively constant at?
 - A. 7.00
- B. 9.31
- C. 4.69
- D. 0.00
- 336. If 1.00 moles of HF and 1.00 moles of NaF are added to 1.00 L of water, what pH will the buffer remain relatively constant at?
 - A. 7.00
- B. 3.46
- C. 10.54
- D. 0.00
- 337. If 1.00 moles of CH₃COOH and 1.00 moles of NaCH₃COO are added to 1.00 L of water, what pH will the buffer remain relatively constant at? C. 9.26
 - A. 7.00
- B. 4.74

- D. 0.00
- 338. If 1.00 moles of NH₄NO₃ and 1.00 moles of NH₃ are added to 1.00 L of water, what pH will the buffer remain relatively constant at? C. 4.75 D. 0.00 B. 9.25 A. 7.00
- 339. Consider the following buffer equilibrium:

$$HF_{(aq)} + H_2O_{(1)} = H_3O_{(aq)} + F_{(aq)}$$

What would limit the buffering action if HCl were added?

- A. [F-]
- B. [HF]
- D. [H₂O⁺]

340. Consider the following buffer equilibrium:

$$HF_{(aq)} + H_2O_{(l)} = H_3O_{(aq)} + F_{(aq)}$$

What would limit the buffering action if KOH were added?

- A. [F-]
- B. [HF]
- C. [H₂O]
- D. [H₃O⁺]

341. Consider the following buffer equilibrium:

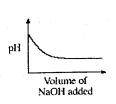
$$HCN + H_2O \leftrightarrows CN - + H_3O^+$$

When 25 mL of 0.200 M KOH are added, the pH rises dramatically. Why?

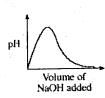
- A. The KOH becomes part of the buffer solution.
- B. The KOH exceeds the buffer capacity.
- C. The KOH reacts with the HCN instead of the H₃O⁺, causing a shift left instead of a shift
- D. The KOH is a strong base and forces the CN- to act as an acid.

Q5: Describe qualitatively how the buffer equilibrium shifts as small quantities of acid or base are added to the buffer

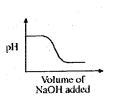
342. Consider the following buffer equilibrium:


$$HCN + H_2O = CN + H_3O^+$$

When a few drops of KOH are added the buffer, the equilibrium

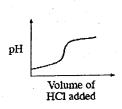

- A. shifts left and the [CN-] decreases
- B. shifts right and the [CN-] decreases
- C. shifts left and the [CN-] increases
- D. shifts right and the [CN-] increases

343. Which of the following graphs describes the relationship between the pH of a buffer and the volume of NaOH added to the buffer?

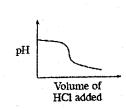

A.

B.

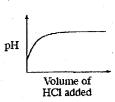
C.

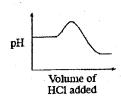


D.



344. Which of the following graphs best describes the changes in pH when HCl is added to a buffer solution?


A.


B.

C.

D.

- 345. Acid is added to a buffer solution. When equilibrium is reestablished the buffering effect has resulted in [H₃O⁺]
 - A. increasing slightly
 - B. decreasing slightly
 - C. increasing considerably
 - sing considerably D. dg

- 346. A few drops of KOH are added to a buffer solution. When equilibrium is reestablished the buffering effect has resulted in pH
 - A. increasing slightly
 - B. decreasing slightly
 - C. increasing considerably
 - D. decreasing considerably
- 347. Consider the buffer equilibrium:

$$HNO_{2 (aq)} + H_{2}O_{(l)} = H_{3}O^{+}_{(aq)} + NO_{2}$$

high low high

concentration

concentration

concentration

What happens when a small amount of HCl (aq) is added to the equilibrium system?

- A. the pH increases slightly
- B. the pH decreases slightly
- C. the equilibrium shifts to the right
- D. the equilibrium does not shift due to the levelling effect
- 348. Consider the buffer equilibrium:

$$HNO_{2 (aq)} + H_2O_{(l)} \stackrel{\leftarrow}{=} H_3O^+_{(aq)} + high low$$

high

concentration

concentration

concentration

What happens when a small amount of KOH (aq) is added to the equilibrium system?

- A. the pH increases slightly
- B. the pH decreases slightly
- C. the equilibrium shifts to the right
- D. the equilibrium does not shift due to the levelling effect
- 349. Consider the buffer equilibrium:

$$HNO_{2 (aq)} + H_{2}O_{(i)} = H_{3}O^{+}_{(aq)} + NO_{2}^{-}_{(aq)}$$

high

low

high

concentration

concentration

concentration

What happens when a small amount of Na₂CO_{3 (aq)} is added to the equilibrium system?

- A. the pH increases slightly
- B. the pH decreases slightly
- C. the equilibrium shifts to the left
- D. the equilibrium does not shift due to the levelling effect

350. Consider the following buffer equilibrium:

$$H_2CO_3_{(aq)} + H_2O_{(1)} = H_3O^+_{(aq)} + HCO_3^-_{(aq)}$$

What happens when a small amount of NaOH (aq) is added?

- A. [H₃O⁺] increases, then the equilibrium shifts to the left.
- B. [H₃O⁺] decreases, then the equilibrium shifts to the left.
- C. [H₃O⁺] increases, then the equilibrium shifts to the right.
- D. [H₃O⁺] decreases, then the equilibrium shifts to the right.
- 351. In the human bloodstream, a buffer exists that is made of H₂CO₃ and NaHCO₃.
 - a. Explain what the purpose for this buffer is:
 - Approximately what pH level would this buffer operate at? Assume that there are equal moles of H₂CO₃ and NaHCO₃.
 - c. When a person exercises strenuously, the muscles produce lactic acid as a waste product. After strenuous exercise, that acid would make its way into the blood stream. What would happen to the pH of the blood?

- 352. A scientist wants a buffer solution that will work at a pH level of 3.75.
 - a. Describe what would be required to make a suitable buffer solution.

Ь.	Which weak acid and conjugate base would work?	and its
	conjugate base	-

c. Explain what would happen if a few drops of NaOH would be added to this buffer. Would the pH change? If so, how much and would it increase or decrease?

pH would		

Explanation:

353. Consider the following buffer equilibrium:

$$HF_{(aq)} + H_2O_{(l)} \stackrel{\leftarrow}{=} H_3O^+_{(aq)} + F_{(aq)}$$

high low high

concentration conce

concentration concentration

Using LeChatelier's Principle, explain what happens to the pH of the buffer solution when a small amount of NaOH is added.

If equal moles of HF and F- are used, what will be the approximate pH level that this buffer will work at?

Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2O What reaction occurs when sodium oxide dissolves in water? A. $NaO_{(s)} \rightarrow Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O_{(s)} \rightarrow 2Na^+(aq) + O^{-2}(aq)$ C. $NaO_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)}$ D. $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$ What reaction occurs when strontium oxide dissolves in water? A. $SrO_{(s)} \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ B. $Sr_2O_{(s)} \rightarrow 2Sr^+(aq) + O^{-2}(aq)$ C. $SrO_{(s)} + H_2O_{(l)} \rightarrow Sr(OH)_2(aq)$ D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2}(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_{2}(g) \rightarrow CO^{+2}(aq) + O^{-2}(aq)$ C. $CO_{2}(g) \rightarrow 2H_2O_{(l)} \rightarrow C(OH)_4(aq)$	State the sequence of events that occur when a such as:	i small amount of I	HCI (aq) is added i
Stress:	$NH_{3 (aq)} + H_2O_{(l)} \stackrel{\leftarrow}{\hookrightarrow} NH_4^+$	aq) + OH- (aq)	•
Shift: Write equations representing the formation of acidic solutions or bions from non-metal and metal oxides (anhydrides) Which of the following will dissolve in water to produce an acidic solution? A. CO_2 B. CaO C. MgO D. Na_2O Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2O What reaction occurs when sodium oxide dissolves in water? A. $NaO_{(s)} \rightarrow Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O_{(s)} \rightarrow 2Na^+(aq) + O^{-2}(aq)$ C. $NaO_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)}$ D. $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$ What reaction occurs when strontium oxide dissolves in water? A. $SrO_{(s)} \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ C. $SrO_{(s)} \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ C. $SrO_{(s)} + H_2O_{(l)} \rightarrow Sr(OH)_2(aq)$ D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{(s)} \rightarrow C^{+4}(aq) + C^{-2}(aq)$ D. $SrO_{(s)} \rightarrow C^{-4}(aq) + C^{-2}(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{(s)} \rightarrow C^{+4}(aq) + C^{-2}(aq)$ D. $SrO_{(s)} \rightarrow C^{-4}(aq) + C^{-2}(aq)$ B. $CO_{(s)} \rightarrow C^{-4}(aq) + C^{-2}(aq)$ C. $CO_{(s)} \rightarrow C^{-4}(aq) + C^{-2}(aq)$	Be sure to describe the stress, the shift and the	e effect on the pH v	what occur.
Write equations representing the formation of acidic solutions or beinns from non-metal and metal oxides (anhydrides) Which of the following will dissolve in water to produce an acidic solution? A. CO_2 B. CaO C. MgO D. Na_2O Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2O What reaction occurs when sodium oxide dissolves in water? A. $NaO_{(s)} \rightarrow Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O_{(s)} \rightarrow 2Na^+(aq) + O^{-2}(aq)$ C. $NaO_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)}$ D. $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$ What reaction occurs when strontium oxide dissolves in water? A. $SrO_{(s)} \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ B. $Sr_2O_{(s)} \rightarrow 2Sr^+(aq) + O^{-2}(aq)$ C. $SrO_{(s)} + H_2O_{(l)} \rightarrow Sr(OH)_2(aq)$ D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{(s)} \rightarrow C^{+4}(aq) + CO^{-2}(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{(s)} \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_{(s)} \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_{(s)} \rightarrow CO^{+2}(aq) + O^{-2}(aq)$ C. $CO_{(s)} \rightarrow CO^{+2}(aq) + O^{-2}(aq)$ C. $CO_{(s)} \rightarrow CO^{+2}(aq) + O^{-2}(aq)$ C. $CO_{(s)} \rightarrow CO^{+2}(aq) + O^{-2}(aq)$	Stress:		
Write equations representing the formation of acidic solutions or bions from non-metal and metal oxides (anhydrides) Which of the following will dissolve in water to produce an acidic solution? A. CO_2 B. CaO C. MgO D. Na_2O Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2O What reaction occurs when sodium oxide dissolves in water? A. $NaO(s) \rightarrow Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O(s) \rightarrow 2Na^{+}(aq) + O^{-2}(aq)$ C. $NaO(s) + H_2O(l) \rightarrow NaOH(aq)$ D. $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$ What reaction occurs when strontium oxide dissolves in water? A. $SrO(s) \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ B. $Sr_2O(s) \rightarrow 2Sr^{+}(aq) + O^{-2}(aq)$ C. $SrO(s) + H_2O(l) \rightarrow Sr(OH)_2(aq)$ D. $SrO(s) + H_2O(l) \rightarrow H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + C^{-2}(aq)$ C. $CO_2(g) \rightarrow C^{+4}(aq) + C^{-2}(aq)$	Shift:		
Write equations representing the formation of acidic solutions or bions from non-metal and metal oxides (anhydrides) Which of the following will dissolve in water to produce an acidic solution? A. CO_2 B. CaO C. MgO D. Na_2O Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2O What reaction occurs when sodium oxide dissolves in water? A. $NaO(s) \rightarrow Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O(s) \rightarrow 2Na^{+}(aq) + O^{-2}(aq)$ C. $NaO(s) + H_2O(l) \rightarrow NaOH(aq)$ D. $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$ What reaction occurs when strontium oxide dissolves in water? A. $SrO(s) \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ B. $Sr_2O(s) \rightarrow 2Sr^{+}(aq) + O^{-2}(aq)$ C. $SrO(s) + H_2O(l) \rightarrow Sr(OH)_2(aq)$ D. $SrO(s) + H_2O(l) \rightarrow H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + C^{-2}(aq)$ C. $CO_2(g) \rightarrow C^{+4}(aq) + C^{-2}(aq)$			
Write equations representing the formation of acidic solutions or bions from non-metal and metal oxides (anhydrides) Which of the following will dissolve in water to produce an acidic solution? A. CO_2 B. CaO C. MgO D. Na_2O Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2O What reaction occurs when sodium oxide dissolves in water? A. $NaO(s) \rightarrow Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O(s) \rightarrow 2Na^{+}(aq) + O^{-2}(aq)$ C. $NaO(s) + H_2O(l) \rightarrow NaOH(aq)$ D. $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)$ What reaction occurs when strontium oxide dissolves in water? A. $SrO(s) \rightarrow Sr^{+2}(aq) + O^{-2}(aq)$ B. $Sr_2O(s) \rightarrow 2Sr^{+}(aq) + O^{-2}(aq)$ C. $SrO(s) + H_2O(l) \rightarrow Sr(OH)_2(aq)$ D. $SrO(s) + H_2O(l) \rightarrow H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + 2O^{-2}(aq)$ B. $CO_2(g) \rightarrow C^{+4}(aq) + C^{-2}(aq)$ C. $CO_2(g) \rightarrow C^{+4}(aq) + C^{-2}(aq)$	Effect on pH		
ions from non-metal and metal oxides (anhydrides) . Which of the following will dissolve in water to produce an acidic solution? A. CO ₂ B. CaO C. MgO D. Na ₂ Co . Which of the following will dissolve in water to produce an acidic solution? A. SO ₂ B. CaO C. BaO D. Rb ₂ Co . What reaction occurs when sodium oxide dissolves in water? A. NaO (s) → Na ⁺² (aq) + O ⁻² (aq) B. Na ₂ O (s) → 2Na ⁺ (aq) + O ⁻² (aq) C. NaO (s) + H ₂ O (l) → NaOH (aq) D. Na ₂ O (s) + H ₂ O (l) → 2NaOH (aq) . What reaction occurs when strontium oxide dissolves in water? A. SrO (s) → Sr ⁺² (aq) + O ⁻² (aq) B. Sr ₂ O (s) → 2Sr ⁺ (aq) + O ⁻² (aq) C. SrO (s) + H ₂ O (l) → Sr(OH) ₂ (aq) D. SrO (s) + H ₂ O (l) → H ₂ SrO ₂ (aq) . What reaction occurs when carbon dioxide dissolves in water? A. CO ₂ (g) → C ⁺⁴ (aq) + 2O ⁻² (aq) B. CO ₂ (g) → CO ⁺² (aq) + O ⁻² (aq) C. CO ₂ (g) + 2H ₂ O (l) → C(OH) ₄ (aq)	Little on pri		
Which of the following will dissolve in water to produce an acidic solution? A. SO_2 B. CaO C. BaO D. Rb_2CO What reaction occurs when sodium oxide dissolves in water? A. $NaO_{(s)} o Na^{+2}(aq) + O^{-2}(aq)$ B. $Na_2O_{(s)} o 2Na^{+}(aq) + O^{-2}(aq)$ C. $NaO_{(s)} + H_2O_{(l)} o NaOH_{(aq)}$ What reaction occurs when strontium oxide dissolves in water? A. $SrO_{(s)} o Sr^{+2}(aq) + O^{-2}(aq)$ B. $Sr_2O_{(s)} o 2Sr^{+}(aq) + O^{-2}(aq)$ C. $SrO_{(s)} o 2Sr^{+}(aq) + O^{-2}(aq)$ C. $SrO_{(s)} + H_2O_{(l)} o Sr(OH)_2(aq)$ D. $SrO_{(s)} + H_2O_{(l)} o H_2SrO_2(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2}(g) o C^{+4}(aq) + 2O^{-2}(aq)$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2}(g) o C^{+4}(aq) + 2O^{-2}(aq)$ C. $CO_{2}(g) o CO^{+2}(aq) + O^{-2}(aq)$ C. $CO_{2}(g) o CO^{+2}(aq) + O^{-2}(aq)$	_		It Last an O
A. SO_2 B. CaO C. BaO D. RO_2C What reaction occurs when sodium oxide dissolves in water? A. $NaO_{(s)} \rightarrow Na^{+2}_{(aq)} + O^{-2}_{(aq)}$ B. $Na_2O_{(s)} \rightarrow 2Na^+_{(aq)} + O^{-2}_{(aq)}$ C. $NaO_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)}$ D. $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$ What reaction occurs when strontium oxide dissolves in water? A. $SrO_{(s)} \rightarrow Sr^{+2}_{(aq)} + O^{-2}_{(aq)}$ B. $Sr_2O_{(s)} \rightarrow 2Sr^+_{(aq)} + O^{-2}_{(aq)}$ C. $SrO_{(s)} + H_2O_{(l)} \rightarrow Sr(OH)_{2}_{(aq)}$ D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_{2}_{(aq)}$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2}_{(g)} \rightarrow C^{+4}_{(aq)} + 2O^{-2}_{(aq)}$ B. $CO_{2}_{(g)} \rightarrow C^{+4}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2}_{(g)} \rightarrow CO^{+2}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2}_{(g)} + 2H_2O_{(l)} \rightarrow C(OH)_{4}_{(aq)}$		to produce an acid C. MgO	D. Na ₂ C
A. NaO (s) \rightarrow Na ⁺² (aq) $+$ O ⁻² (aq) B. Na ₂ O (s) \rightarrow 2Na ⁺ (aq) $+$ O ⁻² (aq) C. NaO (s) $+$ H ₂ O (l) \rightarrow NaOH (aq) D. Na ₂ O (s) $+$ H ₂ O (l) \rightarrow 2NaOH (aq) What reaction occurs when strontium oxide dissolves in water? A. SrO (s) \rightarrow Sr ⁺² (aq) $+$ O ⁻² (aq) B. Sr ₂ O (s) \rightarrow 2Sr ⁺ (aq) $+$ O ⁻² (aq) C. SrO (s) $+$ H ₂ O (l) \rightarrow Sr(OH) ₂ (aq) D. SrO (s) $+$ H ₂ O (l) \rightarrow H ₂ SrO ₂ (aq) What reaction occurs when carbon dioxide dissolves in water? A. CO ₂ (g) \rightarrow C ⁺⁴ (aq) $+$ 2O ⁻² (aq) B. CO ₂ (g) \rightarrow CO ⁺² (aq) $+$ O ⁻² (aq) C. CO ₂ (g) $+$ 2H ₂ O (l) \rightarrow C(OH) ₄ (aq)		to produce an acid C. BaO	lic solution? D. Rb ₂ C
A. NaO (s) \rightarrow Na ⁺² (aq) $+$ O ⁻² (aq) B. Na ₂ O (s) \rightarrow 2Na ⁺ (aq) $+$ O ⁻² (aq) C. NaO (s) $+$ H ₂ O (I) \rightarrow NaOH (aq) D. Na ₂ O (s) $+$ H ₂ O (I) \rightarrow 2NaOH (aq) What reaction occurs when strontium oxide dissolves in water? A. SrO (s) \rightarrow Sr ⁺² (aq) $+$ O ⁻² (aq) B. Sr ₂ O (s) \rightarrow 2Sr ⁺ (aq) $+$ O ⁻² (aq) C. SrO (s) $+$ H ₂ O (I) \rightarrow Sr(OH) ₂ (aq) D. SrO (s) $+$ H ₂ O (I) \rightarrow H ₂ SrO ₂ (aq) What reaction occurs when carbon dioxide dissolves in water? A. CO ₂ (g) \rightarrow C ⁺⁴ (aq) $+$ 2O ⁻² (aq) B. CO ₂ (g) \rightarrow CO ⁺² (aq) $+$ O ⁻² (aq) C. CO ₂ (g) $+$ 2H ₂ O (I) \rightarrow C(OH) ₄ (aq)	What reaction occurs when sodium oxide dis	solves in water?	
C. NaO (s) + H ₂ O (l) \rightarrow NaOH (aq) D. Na ₂ O (s) + H ₂ O (l) \rightarrow 2NaOH (aq) What reaction occurs when strontium oxide dissolves in water? A. SrO (s) \rightarrow Sr ⁺² (aq) + O ⁻² (aq) B. Sr ₂ O (s) \rightarrow 2Sr ⁺ (aq) + O ⁻² (aq) C. SrO (s) + H ₂ O (l) \rightarrow Sr(OH) ₂ (aq) D. SrO (s) + H ₂ O (l) \rightarrow H ₂ SrO ₂ (aq) What reaction occurs when carbon dioxide dissolves in water? A. CO ₂ (g) \rightarrow C ⁺⁴ (aq) + 2O ⁻² (aq) B. CO ₂ (g) \rightarrow CO ⁺² (aq) + O ⁻² (aq) C. CO ₂ (g) + 2H ₂ O (l) \rightarrow C(OH) ₄ (aq)	A. NaO (s) \rightarrow Na ⁺² (aq) $+$ O ⁻² (aq)		
D. Na ₂ O (s) + H ₂ O (l) \rightarrow 2NaOH (aq) What reaction occurs when strontium oxide dissolves in water? A. SrO (s) \rightarrow Sr ⁺² (aq) + O ⁻² (aq) B. Sr ₂ O (s) \rightarrow 2Sr ⁺ (aq) + O ⁻² (aq) C. SrO (s) + H ₂ O (l) \rightarrow Sr(OH) ₂ (aq) D. SrO (s) + H ₂ O (l) \rightarrow H ₂ SrO ₂ (aq) What reaction occurs when carbon dioxide dissolves in water? A. CO ₂ (g) \rightarrow C ⁺⁴ (aq) + 2O ⁻² (aq) B. CO ₂ (g) \rightarrow CO ⁺² (aq) + O ⁻² (aq) C. CO ₂ (g) + 2H ₂ O (l) \rightarrow C(OH) ₄ (aq)	B. $Na_2O_{(s)} \rightarrow 2Na^*(aq) + O^*(aq)$ C. $NaO_{(s)} + H_2O_{(s)} \rightarrow NaOH_{(sq)}$		
A. $SrO_{(s)} \rightarrow Sr^{+2}_{(aq)} + O^{-2}_{(aq)}$ B. $Sr_2O_{(s)} \rightarrow 2Sr^+_{(aq)} + O^{-2}_{(aq)}$ C. $SrO_{(s)} + H_2O_{(l)} \rightarrow Sr(OH)_{2 (aq)}$ D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_{2 (aq)}$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2(g)} \rightarrow C^{+4}_{(aq)} + 2O^{-2}_{(aq)}$ B. $CO_{2(g)} \rightarrow CO^{+2}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2(g)} + 2H_2O_{(l)} \rightarrow C(OH)_{4 (aq)}$	D. $Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$		
A. $SrO_{(s)} o Sr^{+2}_{(aq)} + O^{-2}_{(aq)}$ B. $Sr_2O_{(s)} o 2Sr^+_{(aq)} + O^{-2}_{(aq)}$ C. $SrO_{(s)} + H_2O_{(l)} o Sr(OH)_{2 (aq)}$ D. $SrO_{(s)} + H_2O_{(l)} o H_2SrO_{2 (aq)}$ What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2(g)} o C^{+4}_{(aq)} + 2O^{-2}_{(aq)}$ B. $CO_{2(g)} o CO^{+2}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2(g)} + 2H_2O_{(l)} o C(OH)_{4 (aq)}$. What reaction occurs when strontium oxide o	lissolves in water?	
C. $SrO_{(s)} + H_2O_{(l)} \rightarrow Sr(OH)_2$ (aq) D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_2$ (aq) D. What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2(g)} \rightarrow C^{+4}$ (aq) $+ 2O^{-2}$ (aq) B. $CO_{2(g)} \rightarrow CO^{+2}$ (aq) $+ O^{-2}$ (aq) C. $CO_{2(g)} + 2H_2O_{(l)} \rightarrow C(OH)_4$ (aq)	A. $SrO_{(s)} \to Sr^{+2}_{(aq)} + O^{-2}_{(aq)}$		
D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_{2 (aq)}$ D. What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2 (g)} \rightarrow C^{+4}_{(aq)} + 2O^{-2}_{(aq)}$ B. $CO_{2 (g)} \rightarrow CO^{+2}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2 (g)} + 2H_2O_{(l)} \rightarrow C(OH)_{4 (aq)}$	B. $Sr_2O_{(s)} \rightarrow 2Sr^+_{(aq)} + O^{-2}_{(aq)}$		
What reaction occurs when carbon dioxide dissolves in water? A. $CO_{2(g)} \rightarrow C^{+4}_{(aq)} + 2O^{-2}_{(aq)}$ B. $CO_{2(g)} \rightarrow CO^{+2}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2(g)} + 2H_{2}O_{(1)} \rightarrow C(OH)_{4(aq)}$	$C = SrO_{CS} + H_2O_{CS} \rightarrow SRO_{CS}(an)$		
A. $CO_{2 (g)} \rightarrow C^{+4}_{(aq)} + 2O^{-2}_{(aq)}$ B. $CO_{2 (g)} \rightarrow CO^{+2}_{(aq)} + O^{-2}_{(aq)}$ C. $CO_{2 (g)} + 2H_{2}O_{(1)} \rightarrow C(OH)_{4 (aq)}$	$D \subseteq G \longrightarrow H_1 \cap G \longrightarrow H_2 \cap G \cap $		
B. $CO_{2 (g)} \rightarrow CO^{+2} (aq) + O^{-2} (aq)$ C. $CO_{2 (g)} + 2H_{2}O_{(1)} \rightarrow C(OH)_{4 (aq)}$	D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_{2 (aq)}$		
C. $CO_{2(g)} + 2H_2O_{(l)} \rightarrow C(OH)_{4(aq)}$	D. $SrO_{(s)} + H_2O_{(l)} \rightarrow H_2SrO_{2 (aq)}$ What reaction occurs when carbon dioxide d	issolves in water?	
$U : U_{2}(g) + 2n_{2}U(g) \rightarrow U_{3}(g)$	 D. SrO_(s) + H₂O_(l) → H₂SrO_{2 (aq)} 9. What reaction occurs when carbon dioxide d A. CO_{2 (g)} → C⁺⁴ (aq) + 2O⁻² (aq) 	issolves in water?	
	 D. SrO (s) + H₂O (l) → H₂SrO₂ (aq) 9. What reaction occurs when carbon dioxide d A. CO₂ (g) → C⁺⁴ (aq) + 2O⁻² (aq) B. CO₂ (g) → CO⁺² (aq) + O⁻² (aq) 	issolves in water?	
	D. SrO _(s) + H ₂ O _(l) \rightarrow H ₂ SrO _{2 (aq)} What reaction occurs when carbon dioxide d A. CO _{2 (g)} \rightarrow C ⁺⁴ (aq) + 2O ⁻² (aq) B. CO _{2 (g)} \rightarrow CO ⁺² (aq) + O ⁻² (aq)	issolves in water?	

 360. What is produced when MgO is added to water? A. the metal Mg B. the acid HMgO C. the base Mg(OH)₂ D. the amphiprotic species H₂MgO 		
361. What is produced when Se_2O_3 is added to water? A. Se_2O_3 (s) + H_2O (l) \rightarrow 2Se (s) + $2O_2$ (g) + H_2 (g) B. Se_2O_3 (s) + H_2O (l) \rightarrow $H_2Se_2O_4$ (aq) C. Se_2O_3 (s) + $3H_2O$ (l) \rightarrow 2Se(OH) ₃ (aq) D. $2Se_2O_3$ (s) + $4H_2O$ (l) \rightarrow 4SeH ₂ (g) + $5O_2$ (g)		
362. For each of the following, predict whether the anhydride wand provide the equation to support your answer.	will form an acidic or basic Prediction	solution,
a. BaO + H ₂ O →		
b. $Cl_2O_7 + H_2O \rightarrow$		
c. $Li_2O + H_2O \rightarrow$		
363. For each of the following, predict whether the anhydride and provide the equation to support your answer.	will form an acidic or basi	c solution,
a. $TiO_2 + H_2O \rightarrow$		
b. $Cl_2O_5 + H_2O \rightarrow$		
c. Rb ₂ O + H ₂ O →		₹
364. For each of the following, provide the anhydride that mix	ked with water to produce	the solution.
a. $H_3PO_4 \rightarrow H_2O + $		
b. $Mg(OH)_2 \rightarrow H_2O + $	•	
c. $H_2SO_3 \rightarrow H_2O + $		

365. For each of the following, provide the anhydride that mixed with water to produce the solution.	
505. For each of the following, provide the annythide that mixed with which to produce the solution.	372. A common source of NO ₂ is
a. $HClO_4 \rightarrow H_2O + $	A. a fuel cell
a. 110104 - 1120 -	B. a lead smelter
b. $Ca(OH)_2 \rightarrow H_2O + \underline{\hspace{1cm}}$	C. an aluminum smelter
b. Ca(On) ₂ - N ₂ O +	D. an automobile engine
c. $HNO_3 \rightarrow H_2O + $	
C. III(C)	373. What is a common source of SO _{2 (g)} ?
	A. a fuel cell
R2: Describe the pH conditions required for rain to be called acid rain	B. a car battery
RZ: Describe the pri conditions required for rain to be cance acid rain	C. a lead smelter
	D. corrosion of iron
366. What would be a reasonable [H ₃ O ⁺] value for a sample of rainwater to be classified as acid	374. Which of the following is a major source of NO _{2 (g)} which contributes to the problem of acid
rain?	
A. 1.58 x 10 -8 M B. 3.16 x 10 -7 M C. 6.31 x 10 -5 M D. 1.00 x 10 -1 M	rain?
A. 1.36 x 10 - WI B. 3.10 x 10 WI C. 0.31 x 10 M B. 1.00 x 10 TM	A. a fuel cell
R3: Relate the pH of normal rain water to the presence of dissolved CO2	B. an air conditioner
KS: Relate the pri of normal rain water to the presence of dissolved Coy	C. a nuclear power plant
	D. the automobile engine
367. Which of the following dissolves in water to produce a basic solution? A. O ₂ B. SO ₂ C. NO ₂ D. MgO	R5: Discuss general environmental problems associated with acid rain
368. The pH of normal rainwater is A. less than 7.00 due to dissolved NO _{2 (g)} B. less than 7.00 due to dissolved CO _{2 (g)}	R5: Discuss general environmental problems associated with acid rain
C. greater than 7.0 due to dissolved CO _{2 (g)}	375. Identify an environmental problem associated with acid rain.
	A. increasing the pH of lake
D. equal to 7.00 due to dissolved NO _{2 (g)} and CO _{2 (g)}	B. depletion of the ozone layer
	C. chemical decomposition of rainwater
369. Carbon dioxide gas in the atmosphere dissolves in normal rainwater. This causes normal rainwater to	D. chemical erosion of limestone structures
A. be slightly acidic	R6: Review
B. become acid rain	KU: Keview
C. become a buffered solution	276. The property common to both 0.10 M NH, and 0.10 M NoOH is that both solutions
D. have a pH slightly greater than 7.0	376. The property common to both 0.10 M NH ₃ and 0.10 M NaOH is that both solutions
	A. dissociate 100%
370. What pH would most likely result when CO ₂ dissolves naturally in rainwater?	B. have a pH > 7
A. 3.5 B. 6.5 C. 7.0 D. 7.5	C. turn blue litmus paper red
	D. react with magnesium to produce hydrogen gas
R4: Describe sources of NO _x and SO _x	377. A substance which absorbs hydrogen ions in solution is a definition of which of the following? A. an Arrhenius acid
	B. an Arrhenius base
371. A gas which is produced by internal combustion engines and contributes to the formation of acid	C. a Bronsted-Lowry acid
rain is	D. a Bronsted-Lowry base
A. CO_2 B. O_3 C. H_2O D. NO_2	
	·

	en comparing $0.1~0~M~HPO_4^{-2}$ and $0.10~M~HC_2O_4^{-}$ as acids, which of the fol $HC_2O_4^{-}$ is weaker and its pH is larger		
	HPO ₄ -2 is stronger and its pH is larger	~	
	HPO ₄ -2 is weaker and its pH is smaller		
D. 1	HC ₂ O ₄ is stronger and its pH is smaller		
385. Con	sider the following equilibrium:		

A few drops of NaOH are added and a new equilibrium is established. The new equilibrium can be described by

A. pH = pOH and $K_w > 1.0 \times 10^{-14}$

B. pH = pOH and $K_w < 1.0 \times 10^{-14}$

C. pH > pOH and $K_w = 1.0 \times 10^{-14}$

D. pH < pOH and $K_w = 1.0 \times 10^{-14}$

386. At 20°C the ionization constant of water (K_w) is 6.76 x 10^{-15} . Calculate the pOH and pH of water at 20°C.

pΗ pOH A. 7.085 7.085 B. 7.000 7.000 C. 7.085 6.915 7.085 D. 6.915

387. Which of the following solutions will have a pH = 1.00?

I. 0.10 M HCl II. 0.10 M HNO₂

III. 0.10 M NaOH

A. I only

B. III only

C. I and II only

D. I. II and III

388. Which of the following solutions would have a pH = 2.00?

A. 0.010 M HCl

B. 0.010 M HCN

C. 0.010 M H₂SO₄

D. 0.010 M NaOH

378. Consider the following Bronsted-Lowry equilibrium:

$$C_6H_5NH_{2 (aq)} + H_2PO_4 (aq) = C_6H_5NH_3^+ (aq) + HPO_4^{-2} (aq)$$

The substances acting as acids and bases from left to right are:

A. acid, base, acid, base

B. acid, base, base, acid

C. base, acid, acid, base

D. base, acid, base, acid

379. Which of the following will have the lowest electrical conductivity?

A. 1.00 M HClO₄

B. 1.00 M NaCN

C. $1.00 \text{ M H}_2\text{C}_2\text{O}_4$

D. 1.00 M NaHCO₃

380. In a 1.0 M HF solution, the concentrations of HF, F- and OH-, from highest to lowest is

A. [HF] > [F-] > [OH-]

B. [F-] > [HF] > [OH-]

C. [OH-]>[HF]>[F-]

D. [OH-]>[F-]>[HF]

381. The strength of the ions HC₂O₄-, HSO₃- and H₂PO₄- from weakest to strongest base is

A. $HC_2O_4 < H_2PO_4 < HSO_3$

B. $HC_2O_4^- < HSO_3^- < H_2PO_4^-$

C. $HSO_3^- < H_2PO_4^- < HC_2O_4^-$

D. $H_2PO_4^- < HSO_3^- < HC_2O_4^-$

382. Which of the following is the strongest acid that can exist in an aqueous solution?

A. O-2

B. NH₂-

C. H₃O +

D. HClO₄

383. Consider the following equilibrium:

$$H_3AsO_4 + HSeO_4 = H_2AsO_4 + H_2SeO_4$$

Reactants are favored in this equilibrium. Which of the following describes the relative strengths of the acids and bases?

Stronger Base Stronger Acid H2AsO4 H₂SeO₄ HSeO₃ H2SeO4 H₂AsO₄ H₃AsO₄ HSeO3

 H_3AsO_4

389. Using calculations, show why the electrical conductivity of 1.0 M H₂CO₃ will be less than that for 0.10 M HCl.

390. Calculate the pH of a 0.010 M NH₄CN solution.

391. Consider the following equilibrium:

$$2H_2O_{(1)} = H_3O^+_{(aq)} + OH^-_{(aq)}$$

What changes occur to [H₃O⁺] and pH when NaHSO₃ is added?

$$[H3O+]$$

pΗ

- A. increases
- increases
- B. increases
- decreases
- C. decreasesD. decreases
- decreases increases
- 392. In an aqueous solution of Fe(NO₃)₃, the pH is
 - A. less than 7 and the solution is acidic
 - B. equal to 7 and the solution is neutral
 - C. greater than 7 and the solution is basic
 - D. greater than 7 and the solution is acidic
- 393. The HCO₃ (aq) ion will act as
 - A. a base since K_a < K_b
 - B. a base since $K_a > K_b$
 - C. a acid since K_a < K_b
 - D. a acid since $K_a > K_b$
- 394. Consider the following indicator equilibrium:

$$HIn + H_2O = H_3O^+ + In^-$$

Which of the following is true about the transition point of this indicator?

- A. pH = 7.0
- B. [HIn] = [In]
- C. [HIn] > [In-]
- D. moles of H_3O^+ = moles of In^-
- 395. What color would 0.10 M HCl be in an indicator mixture consisting of phenol red and bromcresol green?
 - A. purple
- B. blue
- C. yellow
- D. green
- 396. When the indicator thymol blue is added to 0.010 M solution of an unknown acid, the solution is orange. The acid could be
 - A. HF
- $B. H_2S$
- C. HCN
- D. HNO₃

400. At 45.0 °C, $K_w = 4.00 \times 10^{-14}$ for pure water.

a. Calculate the pH of water at 45.0 °C.

b. A mixture of the indicators Thymol Blue and Chlorophenol Red is added to the water. What is the resulting colour of the mixture? Explain.

Resulting color_ Explaination:

401. A 20.0 mL sample of H₂SO₄ is titrated with 25.0 mL of 0.20 M Sr(OH)₂. What is the concentration of the acid?

A. 0.13 M

B. 0.20 M

C. 0.25 M

D. 0.50 M

402. At the equivilence point, the titration of HCl with Ba(OH)2 will form a solution which is

- A. basic with pH >7
- B. acidic with pH < 7
- C. basic with pH < 7
- D. neutral with pH = 7

403. What is always true about the pH at the equivilence point when a weak acid is titrated with a strong base?

- A. pH < 7.0
- B. pH > 7.0
- C. pH = 7.0

D. the pH does not change anymore, even if more strong base is added

404. Which of the following pairs of chemicals could be used to make a buffer solution?

A. HNO3 and NaNO3 B. HCN and NaCN C. HI and NaI

D. NaClO₄ and

HClO₄

397. Consider the following equilibrium for the chemical indicator phenol red, HInd, at a pH = 7.3(orange).

HInd +
$$H_2O \leftrightarrows H_3O^+$$
 + Indyellow red

When some Na₂CO₃ is added, what stress is imposed on the equilibrium and what colour change occurs?

Stress

Indicator Colour Change

A. increased [H₃O⁺]

turns red

B. decreased [H₃O⁺]

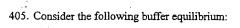
turns red turns yellow

C. increased [H₃O⁺] D. decreased [H₃O⁺]

turns yellow

398. The indicator phenolphthalein can be described by the following equilibrium equation:

NaCN is added to a slighly pink sample of this indicator. After equilibrium has been re-established, how do the [H₃O⁺] and the colour of the solution compare with the original equilibrium?


Colour of solution $[H_3O^+]$ turns more pink A. decreases turns colourless B. decreases

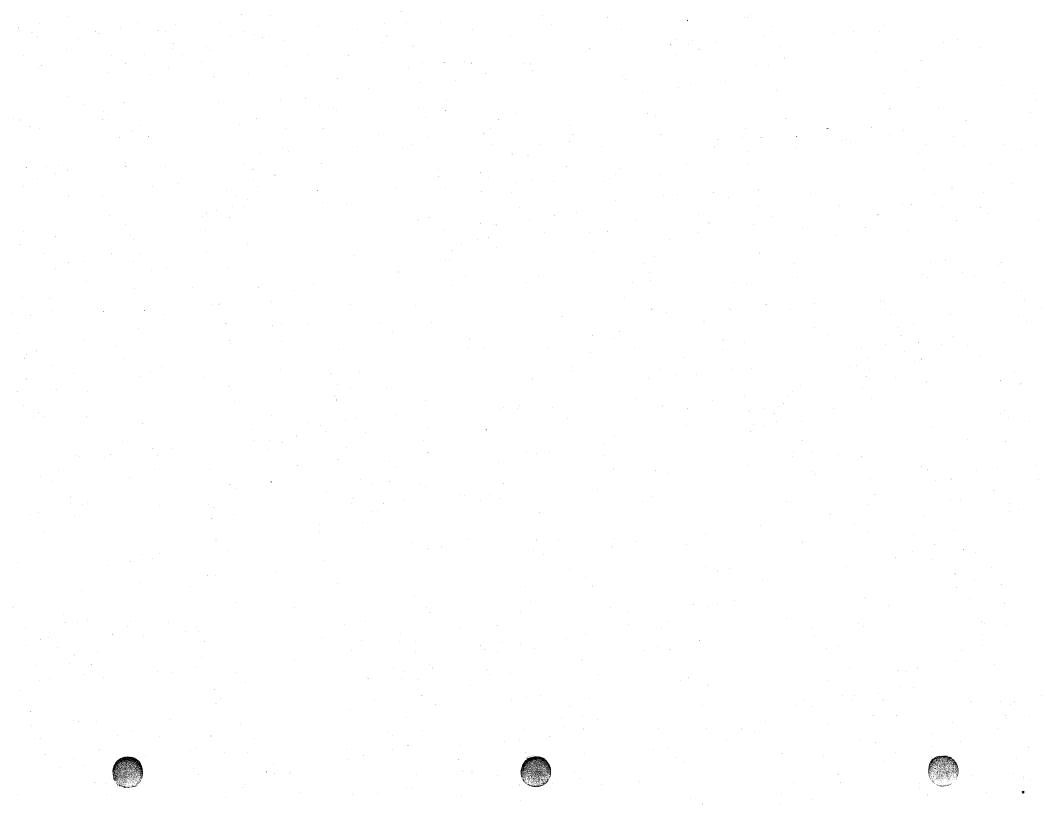
turns more pink C. increases

turns colourless D. increases

399. A chemical indicator has a $K_a = 1.6 \times 10^{-4}$. What is the pH at the transition point and what is the identity of the indicator?

Indicator pΗ methyl orange 3.8 A. bromcresol green 3.8 В. phenophthalien 10.2 C. thymophthalien 10.2 D.

$$HF_{(aq)} + H_2O_{(l)} \stackrel{\leftarrow}{\hookrightarrow} H_3O_{(aq)} + F_{(aq)}$$


What would limit the buffering action if KCH₃COO were added?

A. [F-]

B. [HF]

C. [H₂O]

D. [H₃O⁺]

